【題目】數(shù)列是公差為d)的等差數(shù)列,它的前n項(xiàng)和記為,數(shù)列是公比為q)的等比數(shù)列,它的前n項(xiàng)和記為.,且存在不小于3的正整數(shù),使.

1)若,求.

2)若試比較的大小,并說明理由;

3)若,是否存在整數(shù)mk,使若存在,求出m,k的值;若不存在,說明理由.

【答案】1196;(2;(3)存在,

【解析】

1)直接代入等差數(shù)列的前項(xiàng)和公式,即可得答案;

2)作差后,再構(gòu)造函數(shù),利用二次函數(shù)的知識(shí)判斷函數(shù)值的正負(fù),即可得答案;

3)根據(jù)題意得,化簡得,即可得答案;

1)由可得,

即,,解得.

2)依題意,可得,

顯然.

所以

設(shè),它是關(guān)于的二次函數(shù),它的圖象的開口向上,它的對(duì)稱軸方程,

是(上的增函數(shù),

所以當(dāng)時(shí)

,所以.

3)依題意:.

可得

所以,

因?yàn)?/span>,

,且為奇數(shù),

則其中時(shí),是整數(shù),

可得存在.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】古希臘數(shù)學(xué)家阿波羅尼斯在他的著作《圓錐曲線論》中記載了用平面切割圓錐得到圓錐曲線的方法.如圖,將兩個(gè)完全相同的圓錐對(duì)頂放置(兩圓錐的軸重合),已知兩個(gè)圓錐的底面半徑均為1,母線長均為3,記過圓錐軸的平面為平面(與兩個(gè)圓錐側(cè)面的交線為),用平行于的平面截圓錐,該平面與兩個(gè)圓錐側(cè)面的交線即雙曲線的一部分,且雙曲線的兩條漸近線分別平行于,則雙曲線的離心率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】要得到的圖象,只要將圖象怎樣變化得到( )

A.的圖象沿x軸方向向左平移個(gè)單位

B.的圖象沿x軸方向向右平移個(gè)單位

C.先作關(guān)于x軸對(duì)稱圖象,再將圖象沿x軸方向向右平移個(gè)單位

D.先作關(guān)于x軸對(duì)稱圖象,再將圖象沿x軸方向向左平移個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列的前n項(xiàng)和為,已知,,.

(1)證明:為等比數(shù)列,求出的通項(xiàng)公式;

(2)若,求的前n項(xiàng)和,并判斷是否存在正整數(shù)n使得成立?若存在求出所有n值;若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】工廠質(zhì)檢員從生產(chǎn)線上每半個(gè)小時(shí)抽取一件產(chǎn)品并對(duì)其某個(gè)質(zhì)量指標(biāo)進(jìn)行檢測(cè),一共抽取了件產(chǎn)品,并得到如下統(tǒng)計(jì)表.該廠生產(chǎn)的產(chǎn)品在一年內(nèi)所需的維護(hù)次數(shù)與指標(biāo)有關(guān),具體見下表.

質(zhì)量指標(biāo)

頻數(shù)

一年內(nèi)所需維護(hù)次數(shù)

(1)以每個(gè)區(qū)間的中點(diǎn)值作為每組指標(biāo)的代表,用上述樣本數(shù)據(jù)估計(jì)該廠產(chǎn)品的質(zhì)量指標(biāo)的平均值(保留兩位小數(shù));

(2)用分層抽樣的方法從上述樣本中先抽取件產(chǎn)品,再從件產(chǎn)品中隨機(jī)抽取件產(chǎn)品,求這件產(chǎn)品的指標(biāo)都在內(nèi)的概率;

(3)已知該廠產(chǎn)品的維護(hù)費(fèi)用為元/次,工廠現(xiàn)推出一項(xiàng)服務(wù):若消費(fèi)者在購買該廠產(chǎn)品時(shí)每件多加元,該產(chǎn)品即可一年內(nèi)免費(fèi)維護(hù)一次.將每件產(chǎn)品的購買支出和一年的維護(hù)支出之和稱為消費(fèi)費(fèi)用.假設(shè)這件產(chǎn)品每件都購買該服務(wù),或者每件都不購買該服務(wù),就這兩種情況分別計(jì)算每件產(chǎn)品的平均消費(fèi)費(fèi)用,并以此為決策依據(jù),判斷消費(fèi)者在購買每件產(chǎn)品時(shí)是否值得購買這項(xiàng)維護(hù)服務(wù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若是函數(shù)的極值點(diǎn),求的單調(diào)區(qū)間;

2)當(dāng)時(shí),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拉丁舞,又稱拉丁風(fēng)情舞或自由社交舞,它是拉丁人民在漫長的歷史長河中形成的,包含倫巴、恰恰、牛仔舞、桑巴、斗牛舞、深受人民的喜愛.某藝術(shù)培訓(xùn)機(jī)構(gòu)為了調(diào)查本校學(xué)院對(duì)拉丁舞的學(xué)習(xí)情況,分別在剛學(xué)習(xí)了一個(gè)季度的本校大班(8歲以下)及種子班(8歲以上)的學(xué)員中各隨機(jī)抽取了15名學(xué)員進(jìn)行摸底考試,這30名學(xué)員考試成績的莖葉圖如圖所示.

規(guī)定:成績不低于85分,則認(rèn)為成績優(yōu)秀;成績低于85分,則認(rèn)為成績一般.

1)根據(jù)上述數(shù)據(jù)填寫下列2×2聯(lián)表:

成績優(yōu)秀

成績一般

總計(jì)

大班

種子班

總計(jì)

判斷是否有95%的把握認(rèn)為成績優(yōu)秀或成績一般與學(xué)員的年齡有關(guān);

2)在大班及種子班的參加摸底考試且成績優(yōu)秀的學(xué)員中以分層抽樣的方式抽取6名學(xué)員進(jìn)行特別集訓(xùn),集訓(xùn)后,再對(duì)這6名學(xué)員進(jìn)行測(cè)試,按測(cè)試成績,取前3名授予“舞蹈小精靈”稱號(hào),在被授予“舞蹈小精靈”稱號(hào)的學(xué)員中,求種子班的學(xué)員恰好有2人的概率.

參考公式及數(shù)據(jù):,.

0.100

0.050

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了20171月至201912月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了下面的折線圖.根據(jù)該折線圖,下列結(jié)論正確的是( )

A.年接待游客量逐年增加

B.各年的月接待游客量高峰期大致在8

C.20171月至12月月接待游客量的中位數(shù)為30

D.各年1月至6月的月接待游客量相對(duì)于7月至12月,波動(dòng)性更小,變化比較平穩(wěn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,,均為邊長為的等邊三角形.

(1)求證:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案