已知函數(shù)g(x)=1-2x , f[g(x)]=
1-x2
x2
 (x≠0)
,則f(0)等于( 。
分析:由已知中函數(shù)g(x)=1-2x , f[g(x)]=
1-x2
x2
 (x≠0)
,要求f(0)的值,可令g(x)=0,求出對(duì)應(yīng)x值后,代入可得答案.
解答:解:令g(x)=1-2x=0
則x=
1
2

則f(0)=
1-(
1
2
)
2
(
1
2
)
2
=
3
4
1
4
=3
故選D
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)求值,其中根據(jù)g(x)=0,求出對(duì)應(yīng)x值,是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)=1-cos(πx+2φ)(0<φ<
π
2
)
的圖象過點(diǎn)(
1
2
,  2)
,若有4個(gè)不同的正數(shù)xi滿足g(xi)=M(0<M<1),且xi<4(i=1,2,3,4),則x1+x2+x3+x4等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)=
1-x21+x2
(x≠0,x≠±1,x∈R)
的值域?yàn)锳,定義在A上的函數(shù)f(x)=x-2-x2(x∈A).
(1)判斷函數(shù)f(x)的奇偶性;
(2)判斷函數(shù)f(x)的單調(diào)性并用定義證明;
(3)解不等式f(3x+1)>f(5x+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)=
1-2x1+2x
.判斷并證明函數(shù)g(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)=1+x-
x2
2
+
x3
3
-
x4
4
+…+
x2013
2013
,則函數(shù)g(x+3)的零點(diǎn)所在的區(qū)間為(  )
A、(-1,0)
B、(-4,-3)
C、(-3,-2)或(-2,-1)
D、(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)=
-1,x>0
0,x=0
1,x<0
,函數(shù)f(x)=x2?g(x),則滿足不等式f(a-2)+f(a2)>0的實(shí)數(shù)a的取值范圍是( 。
A、(-2,1)
B、(-1,2)
C、(-∞,-2)∪(1,+∞)
D、(-∞,-1)∪(2,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案