(本題滿分13分)

各棱長均為2的斜三棱柱ABC—DEF中,已知BF⊥AE,

BF∩CE=O,AB=AE,連結(jié)AO。

   (I)求證:AO⊥平面FEBC。

   (II)求二面角B—AC—E的大小。

   (III)求三棱錐B—DEF的體積。

 

【答案】

解:(I)∵BCFE是菱形,∴BF⊥EC

又∵BF⊥AE,且AE∩ED=E∴BF⊥平面AEC

而AO平面SEC  ∴BF⊥AO∵AE=AB, AB=AC  ∴AE=AC

∴AO⊥EC,且BF∩EC=O∴AO⊥平面BCFE. …………4分

   (II)取AC的中點H,連結(jié)BH、OH

∵△ABC是等邊三角形  ∴BH⊥AC

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015屆天津市高一第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分13分)

已知集合,.

(1) 求,;   (2) 若,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆浙江省寧波萬里國際學(xué)校高三上期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分13分)的三個內(nèi)角依次成等差數(shù)列.

   (Ⅰ)若,試判斷的形狀;

   (Ⅱ)若為鈍角三角形,且,求

的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年北京市朝陽區(qū)高三上學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題

(本題滿分13分)

在銳角中,,分別為內(nèi)角,所對的邊,且滿足

(Ⅰ)求角的大小;

(Ⅱ)若,且,,求的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:重慶市09-10學(xué)年高二下學(xué)期5月月考(數(shù)學(xué)文) 題型:解答題

(本題滿分13分)展開式中,求:

(1)第6項;   (2) 第3項的系數(shù);   (3)常數(shù)項。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省龍巖市高三上學(xué)期期末考試數(shù)學(xué)理卷(一級學(xué)校) 題型:解答題

(本題滿分13分)

如圖,在五面體ABCDEF中,FA平面ABCDAD//BC//FE,ABAD,AFABBCFEAD.

(Ⅰ)求異面直線BFDE所成角的余弦值;

(Ⅱ)在線段CE上是否存在點M,使得直線AM與平面CDE所成角的正弦值為?若存在,試確定點M的位置;若不存在,請說明理由.

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊答案