設(shè)橢圓的方程為 , 線段  是過左焦點  且不與  軸垂直的焦點弦. 若在左準線上存在點 , 使  為正三角形, 求橢圓的離心率  

的取值范圍, 并用  表示直線  的斜率.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知水平地面上有一籃球,在斜平行光線的照射下,其陰影為一橢圓(如圖),在平面直角坐標系中,O為原點,設(shè)橢圓的方程為
x2
a2
+
y2
b2
=1
(a>b>0),籃球與地面的接觸點為H,則|OH|=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)設(shè)橢圓的方程為
x2
a2
+
y2
b2
=1
(a>b>0),線段PQ是過左焦點F且不與x軸垂直的焦點弦.若在左準線上存在點R,使△PQR為正三角形,求橢圓的離心率e的取值范圍,并用e表示直線PQ的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)橢圓的方程為 , 線段  是過左焦點  且不與  軸垂直的焦點弦. 若在左準線上存在點 , 使  為正三角形, 求橢圓的離心率  的取值范圍, 并用  表示直線  的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江蘇省徐州市高三考前信息數(shù)學試卷(解析版) 題型:填空題

設(shè)橢圓的方程為,過右焦點且不與軸垂直的直線與橢圓交于,兩點,若在橢圓的右準線上存在點,使為正三角形,則橢圓的離心率的取值范圍是      

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012屆浙江省寧波萬里國際學校高三上期中理科數(shù)學試卷(解析版) 題型:填空題

已知水平地面上有一半徑為4的籃球(球心),在斜平行光線的照射下,其陰影為一

橢圓(如圖),在平面直角坐標系中,為原點,所在直線為軸,設(shè)橢圓的方程為

,籃球與地面的接觸點為,且,則橢圓的離心率為______.

 

查看答案和解析>>

同步練習冊答案