分析 (1)求出函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)函數(shù)的符號求出函數(shù)的單調(diào)性即可;(2)根據(jù)函數(shù)的單調(diào)性得到關(guān)于x的不等式,解出即可.
解答 解:(1)x>0時,f(x)=ln(x+1),f′(x)=$\frac{1}{x+1}$>0,是增函數(shù),
x≤0時,f(x)=-x2+2x,f′(x)=-2x+2=2(1-x)>0,是增函數(shù),
故f(x)在R遞增;
(2)由(1)f(x)在R遞增,
故f(2x-1)>f(2-x),
即2x-1>2-x,解得:x>$\frac{1}{3}$,
故不等式的解集是($\frac{1}{3}$,+∞).
點(diǎn)評 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用以及解不等式問題,是一道基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | max{f(n),f(n+1)}>1 | B. | max{f(n),f(n+1)}<1 | C. | max{f(n),f(n+1)}>$\frac{1}{2}$ | D. | max{f(n),f(n+1)}<$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2.5,3) | B. | (2,2.5) | C. | (1,1.5) | D. | (1.5,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p∨q | B. | p∧q | C. | (¬p)∨(¬q) | D. | (¬p)∨q |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com