圖2
活動:本例給出了利用向量共線判斷三點共線的方法,這是判斷三點共線常用的方法.教學(xué)中可以先引導(dǎo)學(xué)生作圖,通過觀察圖形得到A,B,C三點共線的猜想,再將平面幾何中判斷三點共線的方法轉(zhuǎn)化為用向量共線證明三點共線.本題只要引導(dǎo)學(xué)生理清思路,具體過程可由學(xué)生自己完成.另外,本題是一個很好的與信息技術(shù)整合的題材,教學(xué)中可以通過計算機作圖,進行動態(tài)演示,揭示向量a、b變化過程中,A、B、C三點始終在同一條直線上的規(guī)律.
圖3
解:如圖3,分別作向量、、,過點A、C作直線AC.觀察發(fā)現(xiàn),不論向量a、b怎樣變化,點B始終在直線AC上,猜想A、B、C三點共線.
事實上,因為=-=a+2b-(a+b)=b,
而=-=a+3b-(a+b)=2b,
于是=2.
所以A、B、C三點共線.
點評:關(guān)于三點共線問題,學(xué)生接觸較多,這里是用向量證明三點共線,方法是必須先證明兩個向量共線,并且有公共點.教師引導(dǎo)學(xué)生解完后進行反思,體會向量證法的獨特新穎.
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2 |
1 |
2 |
1 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
π |
2 |
π |
2 |
1 |
3 |
7 |
9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
4 |
OP |
OA |
OB |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com