比較大小:
2
+
10
 
5
+
7
考點(diǎn):一元二次不等式
專題:不等式的解法及應(yīng)用
分析:利用平方作差,再利用不等式的性質(zhì)即可比較出大小.
解答: 解:∵(
2
+
10
)2-(
5
+
7
)2
=2+10+4
5
-(5+7+2
35
)
=
80
-
140
<0,
2
+
10
>0,
5
+
7
>0.
2
+
10
5
+
7

故答案為:<
點(diǎn)評(píng):本題考查了利用平方作差、不等式的性質(zhì)比較兩個(gè)數(shù)的大小的方法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸上,拋物線上一點(diǎn)M(a,4)到焦點(diǎn)的距離等于5,求拋物線的方程和a值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=axekx-1,g(x)=lnx+kx.
(Ⅰ)求g(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)k=1時(shí),f(x)≥g(x)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的不等式x2+x-m(m-1)>0(m∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,滿足:Sn=2an-2n(n∈N*
(1)求證:數(shù)列{an+2}是等比數(shù)列;
(2)若數(shù)列{bn}滿足bn=log2(an+2),求數(shù)列{
bn
an+2
}的前n項(xiàng)和Tn;
(3)(理科)若12Tn>m2-5m對(duì)所有的n∈N*恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)a=
2
π
2
0
4-x2
dx
時(shí),二項(xiàng)式(x2-
a
x
)6
展開式中的x3的系數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=3sin(2x-
π
3
)的圖象為C,則如下結(jié)論中正確的序號(hào)是
 

①圖象C關(guān)于直線x=
11
12
π對(duì)稱; 
②函數(shù)f(x)在區(qū)間(-
π
12
,
12
)內(nèi)是增函數(shù);
③圖象C關(guān)于點(diǎn)(
3
,0)對(duì)稱; 
④當(dāng)x=2kπ+
5
12
π,k∈z時(shí)f(x)取最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列:12+22+32+42+…+n2=
n(n+1)(2n+1)
6
,則數(shù)列:1,2,2,3,3,3,4,4,4,4,…的前100項(xiàng)的和是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=λ(a>0,b>0,λ≠0)的漸近線經(jīng)過點(diǎn)(2,1),則雙曲線的離心率e=
 

查看答案和解析>>

同步練習(xí)冊答案