19.下列命題:
①等軸雙曲線的漸近線是y=±x;
②在△ABC中,“若A=B,則sinA=sinB“的逆命題為真命題;
③若動(dòng)點(diǎn)P到兩定點(diǎn)F1(-4,0),F(xiàn)2(4,0)的距離之和為8,則動(dòng)點(diǎn)P的軌跡為橢圓;
④數(shù)列{an}滿足an2=an-1an+1(n≥2,n∈N),則{an}為等比數(shù)列;
⑤在△ABC中,若c=2bcosA,則△ABC是等邊三角形.
其中正確命題的序號是②⑤(把你認(rèn)為正確命題的序號都填上)

分析 ①,標(biāo)準(zhǔn)方程的等軸雙曲線的漸近線是y=±x;
②,在△ABC中,“若sinA=sinB⇒2RsinA=2RsinB⇒a=b⇒A=B;
③,若動(dòng)點(diǎn)P到兩定點(diǎn)F1(-4,0),F(xiàn)2(4,0)的距離之和為8,則動(dòng)點(diǎn)P的軌跡為線段F1F2
④,當(dāng)數(shù)列為an=an-1=an+1=0時(shí),“{an}不為等比數(shù)列;
⑤,由c=2bcosA,利用正弦定理化簡得:sinC=2sinBcosA,得:sinAcosB+cosAsinB=2sinBcosA,即sinAcosB-cosAsinB=sin(A-B)=0,即A=B

解答 解:對于①,標(biāo)準(zhǔn)方程的等軸雙曲線的漸近線是y=±x,故錯(cuò);
對于②,在△ABC中,“若sinA=sinB⇒2RsinA=2RsinB⇒a=b⇒A=B,故正確;
對于③,若動(dòng)點(diǎn)P到兩定點(diǎn)F1(-4,0),F(xiàn)2(4,0)的距離之和為8,則動(dòng)點(diǎn)P的軌跡為線段F1F2,故錯(cuò);
對于④,當(dāng)數(shù)列為an=an-1=an+1=0時(shí),盡管滿足“an2=an-1•an+1”,但“{an}不為等比數(shù)列,故錯(cuò);
對于⑤,由c=2bcosA,利用正弦定理化簡得:sinC=2sinBcosA,把sinC=sin(A+B)=sinAcosB+cosAsinB代入得:sinAcosB+cosAsinB=2sinBcosA,
即sinAcosB-cosAsinB=sin(A-B)=0,即A-B=0,∴A=B,即a=b,則△ABC為等腰三角形,故正確;
故答案為:②⑤

點(diǎn)評 本題考查了命題真假的判定,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)$y=5tan(\frac{2}{5}x+\frac{π}{6})$的最小正周期是$\frac{5π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知雙曲線的一個(gè)焦點(diǎn)坐標(biāo)為(0,2),它的漸近線方程為y=±$\sqrt{3}$x,則該雙曲線的方程為( 。
A.$\frac{{x}^{2}}{3}$-y2=1B.$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{6}$=1C.$\frac{{y}^{2}}{3}$-x2=1D.$\frac{{y}^{2}}{6}$-$\frac{{x}^{2}}{2}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.長方體的長、寬、高分別為2、2、2$\sqrt{2}$,則其外接球的表面積為( 。
A.64πB.32πC.16πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知α∈(π,2π),cosα=-$\frac{\sqrt{5}}{5}$,則tan2α的值為(  )
A.$\frac{3}{4}$B.$\frac{4}{3}$C.-$\frac{3}{4}$D.-$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{x+a}{x-3}$的圖象過點(diǎn)(0,-1).
(1)求實(shí)數(shù)a的值;
(2)若f(x)=m+$\frac{n}{x-3}$(m,n是常數(shù)),求實(shí)數(shù)m,n的值;
(3)用定義法證明:函數(shù)f(x)在(3,+∞)上是單調(diào)減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知橢圓C:$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{^{2}}$=1的離心率為$\frac{2\sqrt{2}}{3}$,且M,N是橢圓C上相異的兩點(diǎn),若點(diǎn)P(2,0)滿足PM⊥PN,則$\overrightarrow{PM}$•$\overrightarrow{MN}$的取值范圍為( 。
A.[-25,-$\frac{1}{2}$]B.[-5,-$\frac{1}{2}$]C.[-25,-1]D.[-5,-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB=AC=AA1,∠CAB=90°,M、N分別是AA1和AC的中點(diǎn).
(1)求證:MN⊥BC1
(2)求直線MN與平面BCC1B1所成角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若拋物線y2=2px(p>0)上的點(diǎn)A(x0,$\sqrt{2}$)到其焦點(diǎn)的距離是A到y(tǒng)軸距離的3倍,則p等于( 。
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

同步練習(xí)冊答案