分析 (Ⅰ)利用二倍角和兩角和與差以及輔助角公式基本公式將函數(shù)化為y=Asin(ωx+φ)的形式,求出最大值,令其等于2,可得實數(shù)m的值.
(Ⅱ)f(α)=-$\frac{4\sqrt{3}}{5}$(-$\frac{π}{4}$<α<0)帶入計算,找出等式關(guān)系,利用二倍角公式求解即可.
解答 解:(Ⅰ)函數(shù)f(x)=4sinxcos(x+$\frac{π}{3}$)+m(x∈R,m為常數(shù)),
化簡可得:f(x)=4sinxcosxcos$\frac{π}{3}$-4sin2xsin$\frac{π}{3}$+m=sin2x-2$\sqrt{3}$sin2x+m
=sin2x+$\sqrt{3}$cos2x-$\sqrt{3}$+m=2sin(2x+$\frac{π}{3}$)-$\sqrt{3}$+m
∵最大值為2.
即2-$\sqrt{3}$+m=2,
可得m=$\sqrt{3}$.
(Ⅱ)由f(α)=-$\frac{4\sqrt{3}}{5}$(-$\frac{π}{4}$<α<0),即2sin(2α+$\frac{π}{3}$)=$-\frac{4\sqrt{3}}{5}$.
∴sin(2α+$\frac{π}{3}$)=$-\frac{2\sqrt{3}}{5}$
∵-$\frac{π}{4}$<α<0
∴$-\frac{π}{6}$<2α+$\frac{π}{3}$<$\frac{π}{3}$.
∴cos(2α+$\frac{π}{3}$)=$\frac{\sqrt{13}}{5}$;
那么cos2α=cos[(2α$+\frac{π}{3}$)$-\frac{π}{3}$]=cos(2α+$\frac{π}{3}$)cos$\frac{π}{3}$+sin(2α+$\frac{π}{3}$)sin$\frac{π}{3}$=$\frac{\sqrt{13}-6}{10}$.
點評 本題主要考查對三角函數(shù)的化簡能力和三角函數(shù)的圖象和性質(zhì),以及二倍角的運用,利用三角函數(shù)公式將函數(shù)進行化簡是解決本題的關(guān)鍵.屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 24 | B. | 16 | C. | 26 | D. | 27 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{8}$ | B. | $\frac{1}{4}$ | C. | $\frac{3}{4}$ | D. | $\frac{7}{8}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com