已知二次函數(shù)f(x)=x2+bx+c滿足:f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)求f(x)在區(qū)間[0,2]上的最大值與最小值.
分析:(1)根據(jù)f(0)=1,用待定系數(shù)法求得b=-1,即得函數(shù)的解析式.
(2)由f(x)=x2-x+1=(x-
1
2
)2+
3
4
,可得f(x)在[0,
1
2
]
上是減函數(shù),在[
1
2
,2]
上是增函數(shù),由此求得
函數(shù)f(x)在[0,2]上的最值.
解答:解:(1)∵f(0)=1,∴c=1,…(1分)
∴f(x)=x2+bx+1.
∴f(x+1)-f(x)=(x+1)2+b(x+1)+1-x2-bx-1=2x+b+1=2x…(4分)
∴b=-1,
∴f(x)=x2-x+1.…(6分)
(2)f(x)=x2-x+1=(x-
1
2
)2+
3
4
,…(8分)
∵x∈[0,2],f(2)=3,
∴f(x)在[0,
1
2
]
上是減函數(shù),在[
1
2
,2]
上是增函數(shù).
又>f(0)=1,…(10分)
f(x)max=f(2)=3,f(x)min=f(
1
2
)=
3
4
.   …(12分)
點(diǎn)評(píng):本題主要考查求二次函數(shù)在閉區(qū)間上的最值的方法,用待定系數(shù)法求函數(shù)的解析式,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2+2(m-2)x+m-m2
(I)若函數(shù)的圖象經(jīng)過原點(diǎn),且滿足f(2)=0,求實(shí)數(shù)m的值.
(Ⅱ)若函數(shù)在區(qū)間[2,+∞)上為增函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過點(diǎn)(0,1),且與x軸有唯一的交點(diǎn)(-1,0).
(Ⅰ)求f(x)的表達(dá)式;
(Ⅱ)設(shè)函數(shù)F(x)=f(x)-kx,x∈[-2,2],記此函數(shù)的最小值為g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2-16x+q+3.
(1)若函數(shù)在區(qū)間[-1,1]上存在零點(diǎn),求實(shí)數(shù)q的取值范圍;
(2)若記區(qū)間[a,b]的長度為b-a.問:是否存在常數(shù)t(t≥0),當(dāng)x∈[t,10]時(shí),f(x)的值域?yàn)閰^(qū)間D,且D的長度為12-t?請(qǐng)對(duì)你所得的結(jié)論給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣州一模)已知二次函數(shù)f(x)=x2+ax+m+1,關(guān)于x的不等式f(x)<(2m-1)x+1-m2的解集為(m,m+1),其中m為非零常數(shù).設(shè)g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值時(shí),函數(shù)φ(x)=g(x)-kln(x-1)存在極值點(diǎn),并求出極值點(diǎn);
(3)若m=1,且x>0,求證:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知二次函數(shù)f(x)的圖象與x軸的兩交點(diǎn)為(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函數(shù)f(x)的圖象的頂點(diǎn)是(-1,2),且經(jīng)過原點(diǎn),求f(x)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案