函數(shù)的最小值為   
【答案】分析:求出定義域,函數(shù)是兩個(gè)復(fù)合函數(shù)的和,可由復(fù)合函數(shù)的單調(diào)性判斷出兩個(gè)復(fù)合函數(shù)的單調(diào)性,再由單調(diào)性的判斷規(guī)則增函數(shù)加增函數(shù)是增函數(shù),減函數(shù)加減函數(shù)是減函數(shù)判斷出f(x)的單調(diào)性.求最值即可.
解答:解:由已知,
又x∈[4,+∞)時(shí),f(x)單調(diào)遞增,⇒f(x)≥f(4)=+1;
而x∈(-∞,0]時(shí),f(x)單調(diào)遞減,⇒f(x)≥f(0)=0+4=4;
故最小值1
點(diǎn)評(píng):考查復(fù)合函數(shù)單調(diào)性的判斷方法,依據(jù)單調(diào)性求函數(shù)的最值,訓(xùn)練學(xué)生對(duì)利用單調(diào)性求最值的方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

探究函數(shù)f(x)=2x+
8
x
-3,x∈(0,+∞)上的最小值,并確定取得最小值時(shí)x的值.列表如下:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 14 7 5.34 5.11 5.01 5 5.01 5.04 5.08 5.67 7 8.6 12.14
(1)觀察表中y值隨x值變化趨勢(shì)特點(diǎn),請(qǐng)你直接寫出函數(shù)f(x)=2x+
8
x
-3,x∈(0,+∞)的單調(diào)區(qū)間,并指出當(dāng)x取何值時(shí)函數(shù)的最小值為多少;
(2)用單調(diào)性定義證明函數(shù)f(x)=2x+
8
x
-3在(0,2)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列哪個(gè)函數(shù)的最小值為3( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于函數(shù)f(x)=lg
x2+1|x|
 (x≠0)有下列命題:
(1)函數(shù)圖象關(guān)于y軸對(duì)稱;
(2)當(dāng)x>0時(shí),函數(shù)是增函數(shù),當(dāng)x<0時(shí),函數(shù)是減函數(shù);
(3)函數(shù)的最小值為lg2;
(4)函數(shù)是周期函數(shù).
其中正確命題的序號(hào)是
(1)(3)
(1)(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過點(diǎn)(0,1),且與x軸有唯一的交點(diǎn)(-1,0).
(Ⅰ)求f(x)的表達(dá)式;
(Ⅱ)設(shè)函數(shù)F(x)=f(x)-kx,x∈[-2,2],記此函數(shù)的最小值為g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=x2-2x,x∈[-2,a],若函數(shù)的最小值為g(a),則g(a)=
a2-2a
a2-2a

查看答案和解析>>

同步練習(xí)冊(cè)答案