定義在R上的函數(shù)滿足當(dāng)(    )

A.335              B.338              C.1678             D.2012

 

【答案】

B

【解析】

試題分析:根據(jù)已知條件,定義在R上的函數(shù)滿足可知函數(shù)的周期為6.

f(-3)=f(3)=-1,f(-2)=f(4)=0,f(-1)=f(5)=-1,f(0)=f(6)=0,f(1)=1,f(2)=2,可知一個(gè)周期內(nèi)的函數(shù)值的和為1+2+(-1)+0+(-1)+0=1,則可知函數(shù)

,故選B.

考點(diǎn):本試題考查了抽象函數(shù)的運(yùn)用。

點(diǎn)評:解決該試題的關(guān)鍵是利用函數(shù)的周期性來求解一個(gè)周期內(nèi)的函數(shù)值的和,同時(shí)要結(jié)合已知的解析式來求解對應(yīng)的區(qū)間的函數(shù)值,屬于基礎(chǔ)題。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)滿足f(0)=0,f(x)+f(1-x)=1,f(
x
5
)=
1
2
f(x)
,且當(dāng)0≤x1<x2≤1時(shí),f(x1)≤f(x2),則f(
1
2010
)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

10、定義在R上的函數(shù)滿足f(x)=f(x+2),且當(dāng)x∈[3,5]時(shí),f(x)=1-(x-4)2則f(x)(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)滿足
f(x1)-f(x2)
x1-x2
>0,(x1≠x2),則下面成立的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•成都模擬)定義在R上的函數(shù)滿足以下三個(gè)條件:
①對任意的x∈R,都有f(x+4)=f(x);
②對任意的x1,x2∈[0,2]且x1<x2,都有f(x1)<f(x2);
③函數(shù)f(x+2)的圖象關(guān)于y軸對稱,
則下列結(jié)論正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)滿足f(0)=0 ,f(x)+f(1-x)=1 , f(
x
5
)=
1
2
f(x)
,且當(dāng)0≤x1<x2≤1時(shí),f(x1)≤f(x2),則f(
1
2012
)
=
1
32
1
32

查看答案和解析>>

同步練習(xí)冊答案