已知某商品生產(chǎn)成本C與產(chǎn)量q的函數(shù)關(guān)系式為C=100+4q,價(jià)格p與產(chǎn)量q的函數(shù)關(guān)系式為p=25-q.求產(chǎn)量q為何值時(shí)利潤L最大.?

思路分析:利潤L等于收入R減去成本C,而收入R等于產(chǎn)量乘價(jià)格.由此可得出利潤L與產(chǎn)量q的函數(shù)關(guān)系式,再用導(dǎo)數(shù)求最大利潤.?

解:收入R=q·p=q(25-q)=25q-q2.

利潤L=R-C=(25q-q2)-(100+4q

=-q2+21q-100 (0<q<200).

L′=-q+21.?

L′=0,即-q+21=0,解得q=84.?

當(dāng)q<84時(shí),L′>0,當(dāng)q>84時(shí),L′<0.?

因此,在q=84處,L取得極大值,并且這個(gè)極大值就是L的最大值.?

答:產(chǎn)量q為84時(shí)利潤L最大.?

思維啟示:應(yīng)注意產(chǎn)量q的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知某商品生產(chǎn)成本C與產(chǎn)量q的函數(shù)關(guān)系式為C=100+4q,價(jià)格p與產(chǎn)量q的函數(shù)關(guān)系式為p=25-
18
q
.求產(chǎn)量q為何值時(shí),利潤L最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某商品生產(chǎn)成本C與產(chǎn)量q的函數(shù)關(guān)系式為C=100+4q,價(jià)格p與產(chǎn)量q的函數(shù)關(guān)系式為p=25-
18
q
.求產(chǎn)量q等于
 
,利潤L最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆福建省高二下學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知某商品生產(chǎn)成本C與產(chǎn)量q的函數(shù)關(guān)系式為C=100+4q,價(jià)格p與產(chǎn)量q的函數(shù)關(guān)系式為.求產(chǎn)量q為何值時(shí),利潤L最大?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某商品生產(chǎn)成本C與產(chǎn)量q的函數(shù)關(guān)系式為C=100+4q,價(jià)格p與產(chǎn)量q的函數(shù)關(guān)系式為p=25-q.求產(chǎn)量q為何值時(shí)利潤L最大.?

查看答案和解析>>

同步練習(xí)冊答案