8.復(fù)數(shù)i-1的共軛復(fù)數(shù)是-1-i.

分析 由已知結(jié)合共軛復(fù)數(shù)的概念得答案.

解答 解:∵復(fù)數(shù)i-1的實部為-1,虛部為1,
則復(fù)數(shù)i-1的共軛復(fù)數(shù)是-1-i.
故答案為:-1-i.

點評 本題考查共軛復(fù)數(shù)的概念,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)f(x)=exsinx(e是自然對數(shù)的底數(shù),e=2.71828…),若?x∈[0,$\frac{π}{2}$],f(x)≥ax,則實數(shù)a的取值范圍是( 。
A.(-∞,$\frac{1}{4}$]B.(-∞,$\frac{1}{e}$]C.(-∞,$\frac{1}{2}$]D.(-∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.若不等式ax2+bx-1>0的解集是{x|1<x<2}.
(1)試求a、b的值;
(2)求不等式$\frac{ax+1}{bx-1}$≥0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若C${\;}_{8}^{n}$=C${\;}_{8}^{2}$,則n的值為( 。
A.2或6B.6C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.(1)若正數(shù)x,y滿足x+3y=5xy,求3x+4y的最小值;
(2)已知a為正實數(shù)且a2+$\frac{b^2}{2}$=1,求a$\sqrt{1+{b^2}}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在△ABC中,若8sin2$\frac{B+C}{2}$-2cos2A=7.
(1)求角A的大。
(2)如果a=$\sqrt{3}$,b+c=3,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=x+$\frac{a}{{e}^{x}}$(e為自然底數(shù)).
(1)當(dāng)a=e時,求函數(shù)y=f(x)的極值;
(2)是否存在正數(shù)a,使得f(x)>a在定義域內(nèi)恒成立?若存在,求此滿足要求的a;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)=x3+ax2-x+c(x∈R),若函數(shù)f(x)在(-∞,x1),(x2,+∞)上是增函數(shù),則x2-x1的取值范圍是[$\frac{2\sqrt{3}}{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在平面直角坐標系中,以O(shè)為極點,x軸非負半軸為極軸建立極坐標系,已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=3cosφ\\ y=4sinφ\end{array}\right.(φ為參數(shù))$,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}t}{2}}\end{array}\right.$(t為參數(shù)),直線l與曲線C交于M,N兩點.
(1)寫出曲線C的普通方程和直線l的普通方程;
(2)求曲線C上任意一點P(x,y)到直線l距離的最大值.

查看答案和解析>>

同步練習(xí)冊答案