在平行六面體ABCD-A1B1C1D1,已知AB=AD=4,AA1=3,∠A1AB=∠A1AD=∠BAD=,
(1)求AC1的長;
(2)求平行六面體ABCD-A1B1C1D1的體積.

【答案】分析:(1)記A1在面ABCD內(nèi)的射影為O,O在∠BAD的平分線上,說明∠BAD的平分線即菱形ABCD的對角線AC,求AC1的長
(2)求出底面面積,求出高,即可求平行六面體ABCD-A1B1C1D1的體積.
解答:解:(1)記A1在面ABCD內(nèi)的射影為O,
∵∠A1AB=∠A1AD,∴O在∠BAD的平分線上,
又AB=AD,∴∠BAD的平分線即菱形ABCD的
對角線AC,故O在AC上;∵cos∠A1AB=cos∠A1AO×cos∠OAB
∴cos∠A1AO=,∴sin∠A1AO=,AO=
cos∠ACC1=-;又AC=4,在△ACC1中由余弦定理得AC1=9;
所以AC1=9;

(2)在△A1AO中,A1O=,
VABCD-A1B1C1D1==24
 注:求AC1的長還可以用向量:,平方即可.
點評:本題考查幾何體的體積等知識,考查數(shù)形結合、化歸與轉(zhuǎn)化的數(shù)學思想方法,以及空間想象能力、推理論證能力和運算求解能力.解題關鍵在于,正確解三角形.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,在平行六面體ABCD-A1B1C1D1中,O為AC與BD的交點,若
A1B1
=
a
,
A1D1
=
b
,
AA1
=
c
,則向量
B1O
等于(  )
精英家教網(wǎng)
A、
1
2
a
+
1
2
b
+
c
B、
1
2
a
-
1
2
b
+
c
C、-
1
2
a
+
1
2
b
+
c
D、-
1
2
a
-
1
2
b
+
c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖:在平行六面體ABCD-A1B1C1D1中,M為A1C1與B1D1的交點.若
AB
=
a
,
AD
=
b
AA1
=
c
,則下列向量中與
BM
相等的向量是( 。
A、-
1
2
a
+
1
2
b
+
c
B、
1
2
a
+
1
2
b
+
c
C、-
1
2
a
-
1
2
b
+
c
D、
1
2
a-
1
2
b+c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平行六面體ABCD-A1B1C1D1中,向量
D1A
、
D1C
、
A1C1
是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在平行六面體ABCD-A1B1C1D1中,AB=AD=AA1=1,且∠BAD=∠BAA1=∠DAA1=60°,求AC1的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平行六面體ABCD-A1B1C1D1中,
AC
=
a
,
BD
=
b
,
AC1
=
c
,試用
a
、
b
c
表示
BD1
=
b
+
c
-
a
b
+
c
-
a

查看答案和解析>>

同步練習冊答案