【題目】如圖,四棱錐P一ABCD中,AB=AD=2BC=2,BC∥AD,AB⊥AD,△PBD為正三角形.且PA=2.
(1)證明:平面PAB⊥平面PBC;
(2)若點P到底面ABCD的距離為2,E是線段PD上一點,且PB∥平面ACE,求四面體A-CDE的體積.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為迎接2018年省運會,寧德市某體育館需要重新鋪設(shè)塑膠跑道.已知每毫米厚的跑道的鋪設(shè)成本為10萬元,跑道平均每年的維護費C(單位:萬元)與跑道厚度x(單位:毫米)的關(guān)系為C(x)=,x∈[10,15].若跑道厚度為10毫米,則平均每年的維護費需要9萬元.設(shè)總費用f(x)為跑道鋪設(shè)費用與10年維護費之和.
(1)求k的值與總費用f(x)的表達式;
(2)塑膠跑道鋪設(shè)多厚時,總費用f(x)最小,并求最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動點P與兩個定點O(0,0),A(3,0)的距離的比值為2,點P的軌跡為曲線C.
(1)求曲線C的軌跡方程
(2)過點(﹣1,0)作直線與曲線C交于A,B兩點,設(shè)點M坐標(biāo)為(4,0),求△ABM面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知分別是雙曲線的左、右焦點,過點作垂直與軸的直線交雙曲線于,兩點,若為銳角三角形,則雙曲線的離心率的取值范圍是_______.
【答案】
【解析】
根據(jù)雙曲線的通徑求得點的坐標(biāo),將三角形為銳角三角形,轉(zhuǎn)化為,即,將表達式轉(zhuǎn)化為含有離心率的不等式,解不等式求得離心率的取值范圍.
根據(jù)雙曲線的通徑可知,由于三角形為銳角三角形,結(jié)合雙曲線的對稱性可知,故,即,即,解得,故離心率的取值范圍是.
【點睛】
本小題主要考查雙曲線的離心率的取值范圍的求法,考查雙曲線的通徑,考查雙曲線的對稱性,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.本小題的主要突破口在將三角形為銳角三角形,轉(zhuǎn)化為,利用列不等式,再將不等式轉(zhuǎn)化為只含離心率的表達式,解不等式求得雙曲線離心率的取值范圍.
【題型】填空題
【結(jié)束】
17
【題目】已知命題:方程有兩個不相等的實數(shù)根;命題:不等式的解集為.若或為真,為假,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點為F,過F且斜率為的直線l與拋物線C交于A,B兩點,B在x軸的上方,且點B的橫坐標(biāo)為4.
(1)求拋物線C的標(biāo)準(zhǔn)方程;
(2)設(shè)點P為拋物線C上異于A,B的點,直線PA與PB分別交拋物線C的準(zhǔn)線于E,G兩點,x軸與準(zhǔn)線的交點為H,求證:HGHE為定值,并求出定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某沿海城市的海邊有兩條相互垂直的直線型公路l1、l2,海岸邊界MPN近似地看成一條曲線段.為開發(fā)旅游資源,需修建一條連接兩條公路的直線型觀光大道AB,且直線AB與曲線MPN有且僅有一個公共點P(即直線與曲線相切),如圖所示.若曲線段MPN是函數(shù)圖象的一段,點M到l1、l2的距離分別為8千米和1千米,點N到l2的距離為10千米,以l1、l2分別為x、y軸建立如圖所示的平面直角坐標(biāo)系xOy,設(shè)點P的橫坐標(biāo)為p.
(1)求曲線段MPN的函數(shù)關(guān)系式,并指出其定義域;
(2)若某人從點O沿公路至點P觀景,要使得沿折線OAP比沿折線OBP的路程更近,求p的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某面包推出一款新面包,每個面包的成本價為4元,售價為10元,該款面包當(dāng)天只出一爐(一爐至少15個,至多30個),當(dāng)天如果沒有售完,剩余的面包以每個2元的價格處理掉,為了確定這一爐面包的個數(shù),該店記錄了這款新面包最近30天的日需求量(單位:個),整理得下表:
(1)根據(jù)表中數(shù)據(jù)可知,頻數(shù)與日需求量(單位:個)線性相關(guān),求關(guān)于的線性回歸方程;
(2)以30天記錄的各日需求量的頻率代替各日需求量的概率,若該店這款新面包出爐的個數(shù)為24,記當(dāng)日這款新面包獲得的總利潤為(單位:元).
(。┤羧招枨罅繛15個,求;
(ⅱ)求的分布列及其數(shù)學(xué)期望.
相關(guān)公式: ,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com