(本題滿分16分)
已知數(shù)列,其中是首項為1,公差為1的等差數(shù)列;是公差為的等差數(shù)列;是公差為的等差數(shù)列().
(Ⅰ)若= 30,求
(Ⅱ)試寫出a30關于的關系式,并求a30的取值范圍;
(Ⅲ)續(xù)寫已知數(shù)列,可以使得是公差為3的等差數(shù)列,請你依次類推,把已知數(shù)列推廣為無窮數(shù)列,試寫出關于的關系式(N);
(Ⅳ)在(Ⅲ)條件下,且,試用表示此數(shù)列的前100項和

(Ⅰ) ;(Ⅱ)                                   
(Ⅲ) 
(Ⅳ) 。

解析試題分析:(Ⅰ)

于是,                                                
(Ⅱ)


因此,                                   
(Ⅲ)
               
(Ⅳ)


+
          
考點:本題主要考查等差數(shù)列的通項公式,等差數(shù)列、等比數(shù)列的求和。
點評:中檔題,等比數(shù)列、等差數(shù)列相關內容,已是高考必考內容,其難度飄忽不定,有時突出考查求和問題,如“分組求和法”、“裂項相消法”、“錯位相減法”等,有時則突出涉及數(shù)列的證明題。本題解法中,利用了“分組求和法”。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

為等差數(shù)列,為數(shù)列的前項和,已知.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)設,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列滿足;數(shù)列滿足,
(1)求數(shù)列的通項公式;
(2)求數(shù)列、的前項和,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題共14分)
在單調遞增數(shù)列中,,不等式對任意都成立.
(Ⅰ)求的取值范圍;
(Ⅱ)判斷數(shù)列能否為等比數(shù)列?說明理由;
(Ⅲ)設,,求證:對任意的.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設非常數(shù)數(shù)列{an}滿足an+2,n∈N*,其中常數(shù)α,β均為非零實數(shù),且αβ≠0.
(1)證明:數(shù)列{an}為等差數(shù)列的充要條件是α+2β=0;
(2)已知α=1,βa1=1,a2,求證:數(shù)列{| an1an1|} (n∈N*,n≥2)與數(shù)列{n} (n∈N*)中沒有相同數(shù)值的項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知是一個等差數(shù)列,且,
(Ⅰ)求的通項;  (Ⅱ)求前n項和Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知Sn為數(shù)列{an}的前n項和,a1=9,Sn=n2an-n2(n-1),設bn=
(1)求證:bn-bn-1="n" (n≥2,n∈N).
(2)求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)已知等差數(shù)列的前項和為,前項和為.
1)求數(shù)列的通項公式
2)設, 求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(理科題)(本小題12分)
已知數(shù)列{an}是等差數(shù)列,a2=3,a5=6,數(shù)列{bn}的前n項和是Tn,且Tnbn=1.
(1)求數(shù)列{an}的通項公式與前n項的和;
(2)求數(shù)列{bn}的通項公式.

查看答案和解析>>

同步練習冊答案