直線l過橢圓
x2
4
+
y2
3
=1的右焦點(diǎn)F2
并與橢圓交與A、B兩點(diǎn),則△ABF1的周長是( 。
A.4B.6C.8D.16
根據(jù)題意結(jié)合橢圓的定義可得:|AF1|+|AF2|=2a=4,,并且|BF1|+|BF2|=2a=4,
又因為|AF2|+|BF2|=|AB|,
所以△ABF1的周長為:|AF1|+|BF1|+|AB|=|AF1|+|AF2|+|BF1|+|BF2|=4a=8.
故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知斜率為1的直線 l過橢圓
x24
+y2=1
的右焦點(diǎn),交橢圓于A,B兩點(diǎn),求AB長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l過橢圓
x2
4
+
y2
3
=1的右焦點(diǎn)F2
并與橢圓交與A、B兩點(diǎn),則△ABF1的周長是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知斜率為1的直線l過橢圓
x24
+y2=1
的右焦點(diǎn)F2
(1)求直線l的方程;
(2)若l與橢圓交于點(diǎn)A、B 兩點(diǎn),F(xiàn)1為橢圓左焦點(diǎn),求SF1AB

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知斜率為1的直線 l過橢圓
x2
4
+y2=1
的右焦點(diǎn),交橢圓于A,B兩點(diǎn),求AB長.

查看答案和解析>>

同步練習(xí)冊答案