已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的長(zhǎng)軸長(zhǎng)為4,離心率為
1
2
,點(diǎn)P是橢圓上異于頂點(diǎn)的任意一點(diǎn),過(guò)點(diǎn)P作橢圓的切線l,交y軸于點(diǎn)A,直線l′過(guò)點(diǎn)P且垂直于l,交y軸于點(diǎn)B、
(1)求橢圓的方程.
(2)試判斷以AB為直徑的圓能否經(jīng)過(guò)定點(diǎn)?若能,求出定點(diǎn)坐標(biāo);若不能,請(qǐng)說(shuō)明理由.
(1)∵2a=4,
c
a
=
1
2
,∴a=2,c=1,b=
3

∴橢圓的方程為
x2
4
+
y2
3
=1.
(2)設(shè)點(diǎn)P(x0,y0)(x0≠0,y0≠0),
直線l的方程為y-y0=k(x-x0),代入
x2
4
+
y2
3
=1,
整理,得(3+4k2)x2+8k(y0-kx0)x+4(y0-kx02-12=0.
∵x=x0是方程的兩個(gè)相等實(shí)根,
∴2x0=-
8k(y0-kx0
3+4k2
,解得k=-
3x0
4y0

∴直線l的方程為y-y0=-
3x0
4y0
(x-x0).
令x=0,得點(diǎn)A的坐標(biāo)為(0,
4y20+3x20
4y0
).
又∵
x02
4
+
y02
3
=1,∴4y+3x0=12.
∴點(diǎn)A的坐標(biāo)為(0,
3
y0
).
又直線l′的方程為y-y0=
4y0
3x0
(x-x0),
令x=0,得點(diǎn)B的坐標(biāo)為(0,-
y0
3
).
∴以AB為直徑的圓的方程為x•x+(y-
3
y0
)•(y+
y0
3
)=0.整理,得x2+y2+(
y0
3
-
3
y0
)y-1=0.
令y=0,得x=±1,
∴以AB為直徑的圓恒過(guò)定點(diǎn)(1,0)和(-1,0).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦點(diǎn)分別為F1,F(xiàn)2,左頂點(diǎn)為A,若|F1F2|=2,橢圓的離心率為e=
1
2

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程,
(Ⅱ)若P是橢圓上的任意一點(diǎn),求
PF1
PA
的取值范圍
(III)直線l:y=kx+m與橢圓相交于不同的兩點(diǎn)M,N(均不是長(zhǎng)軸的頂點(diǎn)),AH⊥MN垂足為H且
AH
2
=
MH
HN
,求證:直線l恒過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左焦點(diǎn)F(-c,0)是長(zhǎng)軸的一個(gè)四等分點(diǎn),點(diǎn)A、B分別為橢圓的左、右頂點(diǎn),過(guò)點(diǎn)F且不與y軸垂直的直線l交橢圓于C、D兩點(diǎn),記直線AD、BC的斜率分別為k1,k2
(1)當(dāng)點(diǎn)D到兩焦點(diǎn)的距離之和為4,直線l⊥x軸時(shí),求k1:k2的值;
(2)求k1:k2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率是
3
2
,且經(jīng)過(guò)點(diǎn)M(2,1),直線y=
1
2
x+m(m<0)
與橢圓相交于A,B兩點(diǎn).
(1)求橢圓的方程;
(2)當(dāng)m=-1時(shí),求△MAB的面積;
(3)求△MAB的內(nèi)心的橫坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•威海二模)已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為e=
6
3
,過(guò)右焦點(diǎn)做垂直于x軸的直線與橢圓相交于兩點(diǎn),且兩交點(diǎn)與橢圓的左焦點(diǎn)及右頂點(diǎn)構(gòu)成的四邊形面積為
2
6
3
+2

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)點(diǎn)M(0,2),直線l:y=1,過(guò)M任作一條不與y軸重合的直線與橢圓相交于A、B兩點(diǎn),若N為AB的中點(diǎn),D為N在直線l上的射影,AB的中垂線與y軸交于點(diǎn)P.求證:
ND
MP
AB
2
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點(diǎn)為F,過(guò)F作y軸的平行線交橢圓于M、N兩點(diǎn),若|MN|=3,且橢圓離心率是方程2x2-5x+2=0的根,求橢圓方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案