如圖,在邊長為1m的正方形鐵皮的四角切去邊長為x的小正方形,再把它的邊沿虛線折起,做成一個無蓋的方底鐵皮箱,容積為V,并規(guī)定:鐵皮箱的高度x與底面正方形的邊長的比值不超過正常數(shù)c,求V的最大值,并寫出相應的x的值.

【答案】分析:先求出長方體的底面正方形的邊長和高,便可求出長方體的容積V解析式,把容積V變形后使用基本不等式求出最大值,注意分析等號成立條件能否滿足,當?shù)忍柍闪l件不能滿足時,利用導數(shù)值的符號確定函數(shù)的單調性,由單調性確定函數(shù)的最大值.
解答:解:長方體的底面正方形的邊長為1-2x,高為x,所以,容積V=4(x-2x,
鐵皮箱的高度x與底面正方形的邊長1-2x的比值≤c,得 0<x≤,
由均值不等式知V=2(-x)(-x)(2x)≥,
-x=2x,即x=時等號成立.
①當,即 c≥,Vmax=;
②當,即 0<c<時,V'(x)=12(x-2-
則V′(x)在(0,)上單調遞減,
∴V'(x)≥V'()>V'()=0,
∴V(x)在(0,]單調遞增,
∴Vmax=V()=
總之,0<c<時,則當x=時,Vmax=V()=
若 c≥,Vmax=
點評:此題是一道應用題,主要還是考查導數(shù)的定義及利用導數(shù)來求區(qū)間函數(shù)的最值,利用導數(shù)研究函數(shù)的單調性和極值、解不等式等基礎知識,考查綜合分析和解決問題的能力,解題的關鍵是求導要精確.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網如圖,在邊長為1m的正方形鐵皮的四角切去邊長為x的小正方形,再把它的邊沿虛線折起,做成一個無蓋的方底鐵皮箱,容積為V,并規(guī)定:鐵皮箱的高度x與底面正方形的邊長的比值不超過正常數(shù)c,求V的最大值,并寫出相應的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某村計劃建造一個室內面積為800m2的矩形蔬菜溫室(如圖).在溫室內,沿左、右兩側與后側內墻各保留1m寬的通道,沿前側內墻保留3m寬的空地.設矩形溫室的左側邊長為am,后側邊長為bm,蔬菜的種植面積為Sm2
(1)用a、b 表示S;
(2)a、b各為多少時,蔬菜的種植面積S最大?最大種植面積是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在邊長為1m的正方形鐵皮的四角切去邊長為x的小正方形,再把它的邊沿虛線折起,做成一個無蓋的方底鐵皮箱,容積為V,并規(guī)定:鐵皮箱的高度x與底面正方形的邊長的比值不超過正常數(shù)c,求V的最大值,并寫出相應的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在邊長為1m的正方形鐵皮的四角切去邊長為x的小正方形,再把它的邊沿虛線折起,做成一個無蓋的方底鐵皮箱,容積為V,并規(guī)定:鐵皮箱的高度x與底面正方形的邊長的比值不超過正常數(shù)c,求V的最大值,并寫出相應的x的值.
精英家教網

查看答案和解析>>

同步練習冊答案