【題目】某公司的兩個部門招聘工作人員,應聘者從 T1、T2兩組試題中選擇一組參加測試,成績合格者可簽約.甲、乙、丙、丁四人參加應聘考試,其中甲、乙兩人選擇使用試題 T1 , 且表示只要成績合格就簽約;丙、丁兩人選擇使用試題 T2 , 并約定:兩人成績都合格就一同簽約,否則兩人都不簽約.已知甲、乙考試合格的概率都是 ,丙、丁考試合格的概率都是 ,且考試是否合格互不影響.
(1)求丙、丁未簽約的概率;
(2)記簽約人數(shù)為 X,求 X的分布列和數(shù)學期望EX.

【答案】
(1)解:分別記事件甲、乙、丙、丁考試合格為 A,B,C,D.

由題意知 A,B,C,D相互獨立,且 ,

記事件“丙、丁未簽約”為F,

由事件的獨立性和互斥性得:

P(F)=1﹣P(CD)

=


(2)解:X的所有可能取值為0,1,2,3,4.

,

,

,

,

所以,X的分布列是:

X

0

1

2

3

4

P

X的數(shù)學期望


【解析】(1)分別記事件甲、乙、丙、丁考試合格為 A,B,C,D.由題意知 A,B,C,D相互獨立,且 , .記事件“丙、丁未簽約”為F,由事件的獨立性和互斥性得能求出丙、丁未簽約的概率.(2) X的所有可能取值為0,1,2,3,4,分別求出相應在的概率,由此能求出X的分布列和X的數(shù)學期望.
【考點精析】根據(jù)題目的已知條件,利用離散型隨機變量及其分布列的相關知識可以得到問題的答案,需要掌握在射擊、產(chǎn)品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,將繪有函數(shù)f(x)=2sin(ωx+φ)(ω>0, <φ<π)部分圖象的紙片沿x軸折成直二面角,若AB之間的空間距離為 ,則f(﹣1)=(

A.﹣2
B.2
C.-
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,設橢圓 的離心率為, 分別為橢圓的左、右頂點, 為右焦點,直線的交點到軸的距離為,過點軸的垂線 上異于點的一點,以為直徑作圓.

(1)求的方程;

(2)若直線的另一個交點為,證明:直線與圓相切.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商品最近30天的價格f(t)(元)與時間t滿足關系式:f(t)= ,且知銷售量g(t)與時間t滿足關系式 g(t)=﹣t+30,(0≤t≤30,t∈N+),求該商品的日銷售額的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】來自某校一班和二班的共計9名學生志愿服務者被隨機平均分配到運送礦泉水、清掃衛(wèi)生、維持秩序這三個崗位服務,且運送礦泉水崗位至少有一名一班志愿者的概率是

(Ⅰ)求清掃衛(wèi)生崗位恰好一班1人、二班2人的概率;

(Ⅱ)設隨機變量為在維持秩序崗位服務的一班的志愿者的人數(shù),求分布列及期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設點P在曲線 上,點Q在曲線y=ln(2x)上,則|PQ|最小值為(
A.1﹣ln2
B.
C.1+ln2
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市公租房的房源位于A、B、C三個片區(qū),設每位申請人只申請其中一個片區(qū)的房源,且申請其中任一個片區(qū)的房源是等可能的,求該市的任4位申請人中:
(1)恰有2人申請A片區(qū)房源的概率;
(2)申請的房源所在片區(qū)的個數(shù)的ξ分布列與期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱柱中, 底面,四邊形是邊長為的菱形, 分別是的中點,

(Ⅰ)求證: 平面;

(Ⅱ)求二面角的余弦值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣ax,(a∈R)
(1)若函數(shù)f(x)在點區(qū)間[e,+∞]處上為增函數(shù),求a的取值范圍;
(2)若函數(shù)f(x)的圖象在點x=e(e為自然對數(shù)的底數(shù))處的切線斜率為3,且k∈Z時,不等式 k(x﹣1)<f(x)在x∈(1,+∞)上恒成立,求k的最大值;
(3)n>m≥4時,證明:(mnnm>(nmmn

查看答案和解析>>

同步練習冊答案