下列四個(gè)命題:
①直線l的斜率k∈[-1,1],則直線l的傾斜角α∈[-
π
4
,
π
4
];
②直線l:y=kx+1與以A(-1,5)、B(4,-2)兩點(diǎn)為端點(diǎn)的線段相交,則k≤-4或k≥-
3
4

③如果實(shí)數(shù)x,y滿足方程(x-2)2+y2=3,那么
y
x
的最大值為
3
;
④直線y=kx+1與橢圓
x2
5
+
y2
m
=1恒有公共點(diǎn),則m的取值范圍是m≥1.
其中正確命題的序號(hào)是
 
考點(diǎn):命題的真假判斷與應(yīng)用
專題:簡(jiǎn)易邏輯
分析:由直線傾斜角的范圍判斷①錯(cuò)誤;求出直線l恒過的定點(diǎn)M,再求出MA和MB所在直線的斜率判斷②正確;
y
x
的幾何意義可知
y
x
是連接圓上的動(dòng)點(diǎn)和原點(diǎn)的連線的斜率,求出過原點(diǎn)的圓的切線的斜率判斷③正確;
由直線y=kx+1恒過的定點(diǎn)在橢圓內(nèi)部求解m的取值范圍,結(jié)合圓的條件判斷④錯(cuò)誤.
解答: 解:對(duì)于①,∵直線的傾斜角的范圍是[0,π).
∴命題①錯(cuò)誤;
對(duì)于②,∵直線l:y=kx+1恒過定點(diǎn)M(0,1),
kMB=
-2-1
4
=-
3
4
,kMA=
5-1
-1
=-4

∴k≤-4或k≥-
3
4

命題②正確;
對(duì)于③,方程(x-2)2+y2=3表示以(2,0)為圓心,以
3
為半徑的圓,
y
x
的幾何意義是連接圓上的動(dòng)點(diǎn)和原點(diǎn)的連線的斜率,設(shè)過原點(diǎn)的圓的切線方程
為y=kx,由
|2k|
k2+1
=
3
,得k=±
3

y
x
的最大值為
3

命題③正確;
對(duì)于④,∵直線y=kx+1恒過定點(diǎn)(0,1),
∴要使直線y=kx+1與橢圓
x2
5
+
y2
m
=1恒有公共點(diǎn),則m的取值范圍是m≥1,但當(dāng)m=5時(shí)方程
x2
5
+
y2
m
=1不是橢圓,∴命題④錯(cuò)誤.
∴正確命題的序號(hào)是②③.
故答案為:②③.
點(diǎn)評(píng):本題考查命題的真假判斷與應(yīng)用,考查了直線的斜率,考查了直線和圓錐曲線的關(guān)系,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,測(cè)量河對(duì)岸的塔高AB時(shí),可以選與塔底B在同一水平面內(nèi)的兩個(gè)觀測(cè)點(diǎn)C與D,測(cè)得∠BCD=15°,∠BDC=30°,CD=30m,并在點(diǎn)C處測(cè)得塔頂A的仰角為60°,求塔高AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若z=(x2-1)2+(x-1)i為純虛數(shù),則實(shí)數(shù)x的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

log
3
4
a<1,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從等式12=1,22=1+3,32=1+3+5,42=1+3+5+7得到的一般規(guī)律為n2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且滿足f(x)=2xf′(1)+x2,則f′(1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
9
-
y2
16
=1上一點(diǎn)P到焦點(diǎn)F1的距離為8,則P到焦點(diǎn)F2的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有下列幾個(gè)命題:
①函數(shù)y=2x2+x+1在(0,+∞)上是增函數(shù);
②函數(shù)y=
1
x+1
在(-∞,-1)∪(-1,+∞)上是減函數(shù);
③函數(shù)y=
5+4x-x2
的單調(diào)區(qū)間是[-2,+∞);
④已知f(x)在R上是增函數(shù),若a+b>0,則有f(a)+f(b)>f(-a)+f(-b).
其中正確命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

袋里裝有5個(gè)球,每個(gè)球都記有1~5中的一個(gè)號(hào)碼,設(shè)號(hào)碼為x的球質(zhì)量為(x2-5x+30)克,這些球以同等的機(jī)會(huì)(不受質(zhì)量的影響)從袋里取出.若同時(shí)從袋內(nèi)任意取出兩球,則它們質(zhì)量相等的概率是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案