精英家教網 > 高中數學 > 題目詳情
若已知數列{an}是首項為6-12t,公差為6的等差數列;數列{bn}的前n項和為Sn=3n-t.
(1)求數列{an}和{bn}的通項公式;
(2)若數列{bn}是等比數列.試證明:對于任意的n(n∈N*,n≥1),均存在正整數cn,使得bn+1=acn,并求數列{cn}的前n項和Tn
考點:等差數列與等比數列的綜合
專題:等差數列與等比數列
分析:(1)利用數列{an}是首項為6-12t,公差為6的等差數列,可求數列{an}的通項公式,利用Sn=3n-t,再寫一式,即可求出{bn}的通項公式;
(2)先確定t的值,可得數列的通項,要使bn+1=acn成立,則bn+1=2×3n=6cn-12,利用cn=3n-1+2,而對任意的n(n∈N*,n≥1),3n-1+2為正整數,利用數列的求和公式,即可得出結論.
解答: (1)解:∵數列{an}是等差數列,
∴an=(6-12t)+6(n-1)=6n-12t
而數列{bn}的前n項和為Sn=3n-t
∴當n≥2時,bn=(3n-t)-(3n-1-t)=2×3n-1
bn=
3-t,n=1
3n-1,n≥2

(2)證明:∵數列{bn}是等比數列,∴3-t=2×31-1=2,∴t=1
∴an=6n-12,bn=2×3n-1
bn+1=2×3n,acn=6cn-12,
要使bn+1=acn成立,則bn+1=2×3n=6cn-12,
cn=3n-1+2,而對任意的n(n∈N*,n≥1),3n-1+2為正整數
∴對任意的n(n∈N*,n≥1),均存在正整數cn,使得bn+1=acn成立.
∴數列{cn}的前n項和Tn=2n+
1×(1-3n)
1-3
=
3n-1
2
+2n
點評:本題考查數列的通項與求和,考查學生分析解決問題的能力,正確應用等差數列、等比數列的通項公式是關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

曲線y=cosx(0≤x≤
3
2
π)與x軸以及直線x=
2
所圍圖形的面積為( 。
A、4
B、2
C、
5
2
D、3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知x,y滿足約束條件
x-2≤0
y+2≥0
x-y+4≥0
,設(x,y)表示的平面區(qū)域為M,在區(qū)域M內任取一點,則此點到直線y=x-2的距離大于
2
的概率為(  )
A、
1
4
B、
3
4
C、
1
2
D、
1
9

查看答案和解析>>

科目:高中數學 來源: 題型:

在2014年春節(jié)期間,某市物價部門,對本市五個商場銷售的某商品一天的銷售量及其價格進行調查,五個商場的售價x元和銷售量y件之間的一組數據如下表所示:
價格x 9 9.5 10.5 11
銷售量y 11 10 6 5
通過分析,發(fā)現銷售量y對商品的價格x具有線性相關關系,
(1)求銷售量y對商品的價格x的回歸直線方程?
(2)預測銷售量為24件時的售價是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

現有正整數1,2,3,4,5,…n,一質點從第一個數1出發(fā)順次跳動,質點的跳動步數通過拋擲骰子來決定:骰子的點數小于等于4時,質點向前跳一步;骰子的點數大于4時,質點向前跳兩步.
(Ⅰ)若拋擲骰子二次,質點到達的正整數記為ξ,求Eξ和Dξ;
(Ⅱ)求質點恰好到達正整數6的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數y=f(x)在定義域R上是增函數,值域為(0,+∞),且滿足:f(-x)=
1
f(x)
.設F(x)=
1-f(x)
1+f(x)

(1)求函數y=F(x)值域和零點;
(2)判斷函數y=F(x)奇偶性和單調性,并給予證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖所示,用籬笆圍成一個一邊靠墻的矩形菜園,假設墻有足夠長.
(1)若籬笆的總長為40米,則這個矩形的長、寬各為多少米時,菜園的面積最大?
(2)若菜園的面積為32平方米,則這個矩形的長、寬各為多少米時,籬笆的總長最短?

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,已知三棱錐A-PBC中,AC⊥BC,AP⊥PC,M為AB的中點,D為PB的中點,且△PMB為正三角形.
(1)求證:BC⊥平面APC;
(2)若BC=3,AB=10,求二面角P-MC-B的余弦值的絕對值.

查看答案和解析>>

科目:高中數學 來源: 題型:

某小賣部為了了解熱茶銷售量y(杯)與氣溫x(℃)之間的關系,隨機統(tǒng)計了某4天賣出的熱茶的杯數與當天氣溫,并制作了對照表:
氣溫(℃) 18 13 10 -1
杯數 14 24 28 54
由表中數據算得線性回歸方程
y
=bx+a中的b≈-2,預測當氣溫為-5℃時,熱茶銷售量為
 
杯.

查看答案和解析>>

同步練習冊答案