【題目】已知拋物線x2=2py(p>0)的焦點為F,直線x=4與x軸的交點為P,與拋物線的交點為Q,且 .
(1)求拋物線的方程;
(2)如圖所示,過F的直線l與拋物線相交于A,D兩點,與圓x2+(y﹣1)2=1相交于B,C兩點(A,B兩點相鄰),過A,D兩點分別作我校的切線,兩條切線相交于點M,求△ABM與△CDM的面積之積的最小值.
【答案】
(1)
解:由題意可知P(4,0),Q(4, ),丨QF丨= + ,
由 ,則 + = × ,解得:p=2,
∴拋物線x2=4y
(2)
解:設(shè)l:y=kx+1,A(x1,y1),B(x2,y2),
聯(lián)立 ,整理得:x2﹣4kx﹣4=0,
則x1x2=﹣4,
由y= x2,求導(dǎo)y′= ,
直線MA:y﹣ = (x﹣x1),即y= x﹣ ,
同理求得MD:y= x﹣ ,
,解得: ,則M(2k,﹣1),
∴M到l的距離d= =2 ,
∴△ABM與△CDM的面積之積S△ABMS△CDM= 丨AB丨丨CD丨d2,
= (丨AF丨﹣1)(丨DF丨﹣1)d2,
= y1y2d2
=1+k2≥1,
當(dāng)且僅當(dāng)k=0時取等號,
當(dāng)k=0時,△ABM與△CDM的面積之積的最小值1
【解析】(1)求得P和Q點坐標(biāo),求得丨QF丨,由題意可知, + = × 即可求得p的值,求得橢圓方程;(2)設(shè)直線方程,代入拋物線方程,由韋達(dá)定理x1x2=﹣4,求導(dǎo),根據(jù)導(dǎo)數(shù)的幾何意義,求得切線方程,聯(lián)立求得M點坐標(biāo),根據(jù)點到直線距離公式,求得M到l的距離,利用三角形的面積公式,即可求得△ABM與△CDM的面積之積的最小值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=|3x﹣2|+|x﹣2|.
(Ⅰ)解不等式f(x)≤8;
(Ⅱ)對任意的非零實數(shù)x,有f(x)≥(m2﹣m+2)|x|恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了打好脫貧攻堅戰(zhàn),某貧困縣農(nóng)科院針對玉米種植情況進(jìn)行調(diào)研,力爭有效地改良玉米品種,為農(nóng)民提供技術(shù)支援.現(xiàn)對已選出的一組玉米的莖高進(jìn)行統(tǒng)計,獲得莖葉圖如圖(單位:厘米),設(shè)莖高大于或等于180厘米的玉米為高莖玉米,否則為矮莖玉米.
(1)完成2×2列聯(lián)表,并判斷是否可以在犯錯誤概率不超過1%的前提下,認(rèn)為抗倒伏與玉米矮莖有關(guān)?
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(K2= ,其中n=a+b+c+d)
(2)為了改良玉米品種,現(xiàn)采用分層抽樣的方法從抗倒伏的玉米中抽出5株,再從這5株玉米中選取2株進(jìn)行雜交試驗,選取的植株均為矮莖的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我們國家正處于老齡化社會中,老有所依也是政府的民生工程.某市共有戶籍人口400萬,其中老人(年齡60歲及以上)人數(shù)約有66萬,為了解老人們的健康狀況,政府從 老人中隨機抽取600人并委托醫(yī)療機構(gòu)免費為他們進(jìn)行健康評估,健康狀況共分為不能 自理、不健康尚能自理、基本健康、健康四個等級,并以80歲為界限分成兩個群體進(jìn)行 統(tǒng)計,樣本分布被制作成如圖表:
(1)若采取分層抽樣的方法再從樣本中的不能自理的老人中抽取16人進(jìn)一步了解他們的生活狀況,則兩個群體中各應(yīng)抽取多少人?
(2)估算該市80歲及以上長者占全市戶籍人口的百分比;
(3)據(jù)統(tǒng)計該市大約有五分之一的戶籍老人無固定收入,政府計劃為這部分老人每月發(fā) 放生活補貼,標(biāo)準(zhǔn)如下:①80歲及以上長者每人每月發(fā)放生活補貼200元;②80歲以下 老人每人每月發(fā)放生活補貼120元;③不能自理的老人每人每月額外發(fā)放生活補貼100 元.試估計政府執(zhí)行此計劃的年度預(yù)算.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 內(nèi)有一點M(2,1),過M的兩條直線l1 , l2分別與橢圓E交于A,C和B,D兩點,且滿足 (其中λ>0,且λ≠1),若λ變化時,AB的斜率總為 ,則橢圓E的離心率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中心在原點的橢圓C1與雙曲線C2具有相同的焦點,F(xiàn)1(﹣c,0),F(xiàn)2(c,0),P為C1與C2在第一象限的交點,|PF1|=|F1F2|且|PF2|=5,若橢圓C1的離心率 ,則雙曲線的離心率e2的范圍是( )
A.
B.
C.(2,3)
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的右焦點為F,過橢圓C中心的弦PQ長為2,且∠PFQ=90°,△PQF的面積為1.
(1)求橢圓C的方程;
(2)設(shè)A1、A2分別為橢圓C的左、右頂點,S為直線 上一動點,直線A1S交橢圓C于點M,直線A2S交橢圓于點N,設(shè)S1、S2分別為△A1SA2、△MSN的面積,
求 的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線y=kx+1與圓x2+y2+2x﹣my=0相交于A,B兩點,若點A,B關(guān)于直線l:x+y=0對稱,則|AB|= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代一部重要的數(shù)學(xué)著作,書中有如下問題:“今有良馬與駑馬發(fā)長安,至齊.齊去長安三千里,良馬初日行一百九十三里,日增一十三里,駕馬初日行九十七里,日減半里.良馬先至齊,復(fù)還迎駑馬.何日相逢,”其大意為:“現(xiàn)在有良馬和駑馬同時從長安出發(fā)到齊去,已知長安和齊的距離是3000里,良馬第一天行193里,之后每天比前一天多行13里,駑馬第一天行97里,之后每天比前一天少行0.5里.良馬到齊后,立刻返回去迎駑馬,多少天后兩馬相遇.”現(xiàn)有三種說法:①駑馬第九日走了93里路;②良馬四日共走了930里路;③行駛5天后,良馬和駑馬相距615里. 那么,這3個說法里正確的個數(shù)為( )
A.0
B.1
C.2
D.3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com