若實數(shù)x,y滿足不等式組數(shù)學(xué)公式,則3x+4y的最小值是


  1. A.
    13
  2. B.
    15
  3. C.
    20
  4. D.
    28
A
分析:我畫出滿足不等式組的平面區(qū)域,求出平面區(qū)域中各角點的坐標(biāo),然后利用角點法,將各個點的坐標(biāo)逐一代入目標(biāo)函數(shù),比較后即可得到3x+4y的最小值.
解答:解:滿足約束條件的平面區(qū)域如下圖所示:
由圖可知,當(dāng)x=3,y=1時
3x+4y取最小值13
故選A
點評:用圖解法解決線性規(guī)劃問題時,分析題目的已知條件,找出約束條件和目標(biāo)函數(shù)是關(guān)鍵,可先將題目中的量分類、列出表格,理清頭緒,然后列出不等式組(方程組)尋求約束條件,并就題目所述找出目標(biāo)函數(shù).然后將可行域各角點的值一一代入,最后比較,即可得到目標(biāo)函數(shù)的最優(yōu)解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)y=f(x),若對任意不等實數(shù)x1,x2滿足
f(x1)-f(x2)
x1-x2
<0
,且對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(1,0)對稱,則當(dāng) 1≤x≤4時,
y
x
的取值范圍為
[-
1
2
,1]
[-
1
2
,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年重慶一中高三(上)10月月考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

定義在R上的函數(shù)y=f(x),若對任意不等實數(shù)x1,x2滿足,且對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(1,0)對稱,則當(dāng) 1≤x≤4時,的取值范圍為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年山東省實驗中學(xué)高考數(shù)學(xué)三模試卷(文科)(解析版) 題型:填空題

定義在R上的函數(shù)y=f(x),若對任意不等實數(shù)x1,x2滿足,且對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(1,0)對稱,則當(dāng) 1≤x≤4時,的取值范圍為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年山東省淄博市高考數(shù)學(xué)模擬試卷3(理科)(解析版) 題型:填空題

定義在R上的函數(shù)y=f(x),若對任意不等實數(shù)x1,x2滿足,且對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(1,0)對稱,則當(dāng) 1≤x≤4時,的取值范圍為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年山東省實驗中學(xué)高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題

定義在R上的函數(shù)y=f(x),若對任意不等實數(shù)x1,x2滿足,且對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(1,0)對稱,則當(dāng) 1≤x≤4時,的取值范圍為   

查看答案和解析>>

同步練習(xí)冊答案