(理數(shù))(14分) 已知函數(shù)
(Ⅰ)設(shè)函數(shù)F(x)=18f(x)- [h(x)],求F(x)的單調(diào)區(qū)間與極值;
(Ⅱ)設(shè),解關(guān)于x的方程;
(Ⅲ)設(shè),證明:
(理數(shù)) 解:(Ⅰ)

,得舍去).
當(dāng)時.;當(dāng)時,,
故當(dāng)時,為增函數(shù);當(dāng)時,為減函數(shù).
的極大值點,且.………………………………4分
(Ⅱ)原方程可化為,即
……………6分

①當(dāng)時,原方程有一解;
②當(dāng)時,原方程有二解;…………8分
③當(dāng)時,原方程有一解;
④當(dāng)時,原方程無解.……………………10分
(Ⅲ)由已知得,

設(shè)數(shù)列的前n項和為,且
從而有,當(dāng)時,


即對任意時,有,又因為,所以………14分.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
已知是定義在上的奇函數(shù),當(dāng)
(1)求的解析式;
(2)是否存在實數(shù),使得當(dāng)的最小值是4?如果存在,求出的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)的導(dǎo)數(shù)              ,    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知對任意實數(shù),有,且時,,則時        (    )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)已知函數(shù)
(Ⅰ)求函數(shù)的定義域;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)時,若存在使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)時,都取得極值。
(1)求的值;
(2)若,求的單調(diào)區(qū)間和極值;
(3)若對都有恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定義在R上的函數(shù),其中a為常數(shù).
(I)若x=1是函數(shù)的一個極值點,求a的值;
(II)若函數(shù)在區(qū)間(-1,0)上是增函數(shù),求a的取值范圍;
(III)若函數(shù),在x=0處取得最大值,求正數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

,若,則=
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知f(x)=x2+2x·f′(1),則f′(0)=_______

查看答案和解析>>

同步練習(xí)冊答案