已知橢圓G與雙曲線12x2-4y2=3有相同的焦點(diǎn),且過點(diǎn)P(1,).
(1)求橢圓G的方程;
(2)設(shè)F1、F2是橢圓G的左焦點(diǎn)和右焦點(diǎn),過F2的直線l:x=my+1與橢圓G相交于A、B兩點(diǎn),請(qǐng)問△ABF1的內(nèi)切圓M的面積是否存在最大值?若存在,求出這個(gè)最大值及直線l的方程,若不存在,請(qǐng)說明理由.
解:(1)雙曲線的焦點(diǎn)坐標(biāo)為,所以橢圓的焦點(diǎn)坐標(biāo)為 1分 設(shè)橢圓的長軸長為,則,即, 又,所以 ∴橢圓G的方程 5分 (2)如圖,設(shè)內(nèi)切圓M的半徑為,與直線的切點(diǎn)為C,則三角形的面積等于的面積+的面積+的面積. 即 當(dāng)最大時(shí),也最大,內(nèi)切圓的面積也最大, 7分 設(shè)、(),則, 由,得, 9分 解得,, ∴,令,則,且, 有,令,則, 11分 當(dāng)時(shí),,在上單調(diào)遞增,有,, 即當(dāng),時(shí),有最大值,得,這時(shí)所求內(nèi)切圓的面積為, 12分 ∴存在直線,的內(nèi)切圓M的面積最大值為. 13分 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓D:+=1與圓M:x+(y-m)=9(m∈R),雙曲線G與橢圓D有相同的焦點(diǎn),它的兩條漸近線恰好與圓M相切。當(dāng)m=5時(shí),求雙曲線G的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)
已知橢圓G與雙曲線有相同的焦點(diǎn),且過點(diǎn).
(1)求橢圓G的方程;
(2)設(shè)、是橢圓G的左焦點(diǎn)和右焦點(diǎn),過的直線與橢圓G相交于A、B兩點(diǎn),請(qǐng)問的內(nèi)切圓M的面積是否存在最大值?若存在,求出這個(gè)最大值及直線的方程,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省汕頭市高二(下)教學(xué)質(zhì)量檢測數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com