已知f(x)=
m
n
,設ω>0,
m
=(sinω x+cosω x, 
3
cosω x)
,
n
=(cosω x-sinω x,  2sinω x)
,若f(x)圖象中相鄰的兩條對稱軸間的距離等于
π
2

(1)求ω的值;
(2)在△ABC中,a,b,c分別為角A,B,C的對邊,a=
3
,S△ABC=
3
2
.當f(A)=1時,求b,c的值.
分析:(1)由數(shù)量積的定義和三角函數(shù)的公式可得f(x)=2sin(2ωx+
π
6
)
,又可得
T
2
=
π
2
,由周期公式可得;
(2)由題意可得A=
π
3
,由余弦定理和面積可得b,c的方程組,解之即可.
解答:解:(1)∵f(x)=cos2ωx-sin2ωx+2
3
sinωxcosωx

=cos2ωx+
3
sin2ωx
=2sin(2ωx+
π
6
)
,
又  
T
2
=
π
2
,解得ω=1;
(2)∵f(A)=1,∴2sin(2A+
π
6
)=1
,
由 0<A<π得 A=
π
3
,
又∵
a2=b2+c2-2bccosA
S△ABC=
1
2
bcsinA

3=b2+c2-2bccos
π
3
3
2
=
1
2
bcsin
π
3

解得
b=2
c=1
b=1
c=2
點評:本題考查平面向量數(shù)量積的運算,以及余弦定理的應用,屬中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知向量
m
=(
3
sin
x
4
,1)
,
n
=(cos
x
4
,cos2
x
4
)
,函數(shù)f(x)=
m
.
n

(Ⅰ)若f(x)=1,求cos(
3
-x)
的值;
(Ⅱ)在銳角△ABC中,角A,B,C的對邊分別是a,b,c,且滿足acosC+
1
2
c=b
,求f(2B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
m
=(sin
x
3
,cos
x
3
)
(x∈R),
n
=(
3
,-1)
,且f(x)=
m
n

求:
(1)f(
4
)
的值;
(2)若A,B,C為△ABC的三個內(nèi)角,A,B為銳角,且f(3A+
π
2
)=
10
13
,f(3B+2π)=
6
5
,求cosC的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•虹口區(qū)二模)已知f(x)=
m
n
,其中
m
=
2cosx,1
,
n
=
cosx,
3
sin2x
(x∈R).
(1)求f(x)的最小正周期及單調(diào)遞增區(qū)間;
(2)在△ABC中,a、b、c分別是角A、B、C的對邊,若f(A)=2,b=1,△ABC面積為
3
3
2
,求:邊a的長及△ABC的外接圓半徑R.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知f(x)=
m
n
,設ω>0,
m
=(sinω x+cosω x, 
3
cosω x)
n
=(cosω x-sinω x,  2sinω x)
,若f(x)圖象中相鄰的兩條對稱軸間的距離等于
π
2

(1)求ω的值;
(2)在△ABC中,a,b,c分別為角A,B,C的對邊,a=
3
S△ABC=
3
2
.當f(A)=1時,求b,c的值.

查看答案和解析>>

同步練習冊答案