5.已知向量$\overrightarrow{a}$=(sin(ωx+φ),2),$\overrightarrow$=(1,cos(ωx+φ)),(ω>0,0<φ<$\frac{π}{4}$),函數(shù)f(x)=($\overrightarrow{a}$+$\overrightarrow$)•($\overrightarrow{a}$-$\overrightarrow$)的圖象過(guò)點(diǎn)M(1,$\frac{7}{2}$),且相鄰兩對(duì)稱(chēng)軸之間的距離為2.
(Ⅰ)求f(x)的表達(dá)式;
(Ⅱ)求f(x)在[-$\frac{2}{3}$,2]上的最大值,并求出此時(shí)x的值.

分析 (Ⅰ)根據(jù)平面向量數(shù)量積公式并化簡(jiǎn)三角函數(shù)式,得到解析式;
(Ⅱ)利用(Ⅰ)的解析式得到角度范圍,利用正弦函數(shù)的有界性求最大值.

解答 解:(Ⅰ)因?yàn)閒(x)=($\overrightarrow{a}$+$\overrightarrow$)•($\overrightarrow{a}$-$\overrightarrow$)=${\overrightarrow{a}}^{2}-{\overrightarrow}^{2}$=sin2(ωx+φ)-cos2(ωx+φ)+3
=3-cos(2ωx+2φ),由相鄰兩對(duì)稱(chēng)軸之間的距離為2.得到周期為4,所以ω=$\frac{π}{4}$,又過(guò)(1,$\frac{7}{2}$),
得到sin2φ=$\frac{1}{2}$,因?yàn)?<φ<$\frac{π}{4}$,所以2φ=$\frac{π}{6}$;
所以f(x)=3-cos($\frac{π}{2}x+\frac{π}{6}$);
(Ⅱ)因?yàn)閤∈[-$\frac{2}{3}$,2],所以$\frac{π}{2}x+\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{7}{6}π$],
所以當(dāng)$\frac{π}{2}x+\frac{π}{6}=π$時(shí)即x=$\frac{5}{3}$時(shí)函數(shù)取得最大值為3-(-1)=4.

點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積的坐標(biāo)運(yùn)算以及三角函數(shù)的解析式化簡(jiǎn)、三角函數(shù)的性質(zhì);屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.根據(jù)如圖所示的偽代碼知,輸出的a的值為21.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知a,b∈R,且ex+1≥ax+b對(duì)?x∈R恒成立(其中e為自然對(duì)數(shù)的底數(shù)),則ab的最大值為( 。
A.$\frac{1}{2}{e^3}$B.$\frac{{\sqrt{2}}}{2}{e^3}$C.$\frac{{\sqrt{3}}}{2}{e^3}$D.e3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知向量$\overrightarrow a,\overrightarrow b$滿(mǎn)足$|{\overrightarrow a}|=2$,$|\overrightarrow b|=2$,$(\overrightarrow a+\overrightarrow b)•(3\overrightarrow a-\overrightarrow b)=4$,則$\overrightarrow a$與$\overrightarrow b$的夾角為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)α、β為互不重合的平面,m、n為互不重合的直線,給出下列四個(gè)命題:
①若m⊥α,n?α,則m⊥n;
②若m?α,n?α,m∥β,n∥β,則α∥β;
③若α⊥β,α∩β=m,n?α,m⊥n,則n⊥β;
④若m⊥α,α⊥β,m∥n,則n∥β.
其中所有正確命題的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{3}(x+1),x>0}\\{2f(x+10),x≤0}\end{array}\right.$,則f(-2)等于( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知F1,F(xiàn)2是橢圓和雙曲線的公共焦點(diǎn),P是它們的一個(gè)公共點(diǎn),且$∠{F_1}P{F_2}=\frac{π}{3}$,則橢圓和雙曲線離心率倒數(shù)之和的最大值為( 。
A.$\frac{4}{3}$B.$\frac{{4\sqrt{3}}}{3}$C.4D.$\frac{{4\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.函數(shù)f(x)=$\frac{1}{4}$sinxcosx是( 。
A.最小正周期為2π的偶函數(shù)B.最小正周期為2π的奇函數(shù)
C.最小正周期為π的偶函數(shù)D.最小正周期為π的奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,在四棱錐P-ABCD中,△PAD為正三角形,四邊形ABCD為直角梯形,CD∥AB,BC⊥AB,平面PAD⊥平面ABCD,點(diǎn)E、F分別為AD、CP的中點(diǎn),AD=AB=2CD=2.
(Ⅰ)證明:直線EF∥平面PAB;
(Ⅱ)求直線EF與平面PBC所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案