科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源:2010年高考試題分項版理科數學之專題十四復數 題型:解答題
(本小題滿分13分)
品酒師需定期接受酒味鑒別功能測試,一種通常采用的測試方法如下:拿出瓶外觀相同但品質不同的酒讓其品嘗,要求其按品質優(yōu)劣為它們排序;經過一段時間,等其記憶淡忘之后,再讓其品嘗這瓶酒,并重新按品質優(yōu)劣為它們排序,這稱為一輪測試。根據一輪測試中的兩次排序的偏離程度的高低為其評為。
現(xiàn)設,分別以表示第一次排序時被排為1,2,3,4的四種酒在第二次排序時的序號,并令
,
則是對兩次排序的偏離程度的一種描述。
(Ⅰ)寫出的可能值集合;
(Ⅱ)假設等可能地為1,2,3,4的各種排列,求的分布列;
(Ⅲ)某品酒師在相繼進行的三輪測試中,都有,
(i)試按(Ⅱ)中的結果,計算出現(xiàn)這種現(xiàn)象的概率(假定各輪測試相互獨立);
(ii)你認為該品酒師的酒味鑒別功能如何?說明理由。
查看答案和解析>>
科目:高中數學 來源:2010年高考試題分項版理科數學之專題十排列、組合、二項式定理 題型:解答題
(本小題滿分13分)
品酒師需定期接受酒味鑒別功能測試,一種通常采用的測試方法如下:拿出瓶外觀相同但品質不同的酒讓其品嘗,要求其按品質優(yōu)劣為它們排序;經過一段時間,等其記憶淡忘之后,再讓其品嘗這瓶酒,并重新按品質優(yōu)劣為它們排序,這稱為一輪測試。根據一輪測試中的兩次排序的偏離程度的高低為其評為。
現(xiàn)設,分別以表示第一次排序時被排為1,2,3,4的四種酒在第二次排序時的序號,并令
,
則是對兩次排序的偏離程度的一種描述。
(Ⅰ)寫出的可能值集合;
(Ⅱ)假設等可能地為1,2,3,4的各種排列,求的分布列;
(Ⅲ)某品酒師在相繼進行的三輪測試中,都有,
(i)試按(Ⅱ)中的結果,計算出現(xiàn)這種現(xiàn)象的概率(假定各輪測試相互獨立);
(ii)你認為該品酒師的酒味鑒別功能如何?說明理由。
查看答案和解析>>
科目:高中數學 來源:2010年高考試題分項版理科數學之專題一集合與簡易邏輯 題型:解答題
(本小題滿分13分)
品酒師需定期接受酒味鑒別功能測試,一種通常采用的測試方法如下:拿出瓶外觀相同但品質不同的酒讓其品嘗,要求其按品質優(yōu)劣為它們排序;經過一段時間,等其記憶淡忘之后,再讓其品嘗這瓶酒,并重新按品質優(yōu)劣為它們排序,這稱為一輪測試。根據一輪測試中的兩次排序的偏離程度的高低為其評為。
現(xiàn)設,分別以表示第一次排序時被排為1,2,3,4的四種酒在第二次排序時的序號,并令
,
則是對兩次排序的偏離程度的一種描述。
(Ⅰ)寫出的可能值集合;
(Ⅱ)假設等可能地為1,2,3,4的各種排列,求的分布列;
(Ⅲ)某品酒師在相繼進行的三輪測試中,都有,
(i)試按(Ⅱ)中的結果,計算出現(xiàn)這種現(xiàn)象的概率(假定各輪測試相互獨立);
(ii)你認為該品酒師的酒味鑒別功能如何?說明理由。
查看答案和解析>>
科目:高中數學 來源:2010年普通高等學校招生全國統(tǒng)一考試(安徽卷)數學試題(理科) 題型:解答題
(本小題滿分13分)
品酒師需定期接受酒味鑒別功能測試,一種通常采用的測試方法如下:拿出瓶外觀相同但品質不同的酒讓其品嘗,要求其按品質優(yōu)劣為它們排序;經過一段時間,等其記憶淡忘之后,再讓其品嘗這瓶酒,并重新按品質優(yōu)劣為它們排序,這稱為一輪測試。根據一輪測試中的兩次排序的偏離程度的高低為其評為。
現(xiàn)設,分別以表示第一次排序時被排為1,2,3,4的四種酒在第二次排序時的序號,并令
,
則是對兩次排序的偏離程度的一種描述。
(Ⅰ)寫出的可能值集合;
(Ⅱ)假設等可能地為1,2,3,4的各種排列,求的分布列;
(Ⅲ)某品酒師在相繼進行的三輪測試中,都有,
(i)試按(Ⅱ)中的結果,計算出現(xiàn)這種現(xiàn)象的概率(假定各輪測試相互獨立);
(ii)你認為該品酒師的酒味鑒別功能如何?說明理由。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com