過(guò)橢圓(a>b>0)的一個(gè)焦點(diǎn)F且垂直于x軸的直線交橢圓于點(diǎn)
(Ⅰ)求橢圓C的方程;
(Ⅱ)是否存在過(guò)點(diǎn)A(-2,0)的直線l與橢圓C交于兩點(diǎn)M、N,使得(其中P為弦MN的中點(diǎn))?若存在,求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由.
【答案】分析:(Ⅰ)依題意,得F(-1,0),由此解得a2=2,b2=1,從而能夠求出橢圓C的方程.
(Ⅱ)設(shè)直線l的方程為y=k(x+2),代入橢圓方程,得(1+2k2)x2+8k2x+8k2-2=0,由△=64k4-4(1+2k2)(8k2-2)>0,知,設(shè)M(x1,y1),N(x2,y2),則,由P為MN的中點(diǎn),且|FP|=|MN|,知,(1+k2)x1x2+(1+2k2)(x1+x2)+1+4k2=0,由此能導(dǎo)出滿足條件的直線存在,并能求出其方程.
解答:解:(Ⅰ)依題意,得F(-1,0),
,
解得a2=2,b2=1,
∴橢圓C的方程為
(Ⅱ)設(shè)滿足條件的直線l存在,方程為y=k(x+2)(k必存在),
代入橢圓方程,得(1+2k2)x2+8k2x+8k2-2=0,
∵△=64k4-4(1+2k2)(8k2-2)>0,
,
設(shè)M(x1,y1),N(x2,y2),
,
∵P為MN的中點(diǎn),且|FP|=|MN|,
∴FM⊥FN,
,
∴(x1+1,y1)•(x2+1,y2
=(1+k2)x1x2+(1+2k2)(x1+x2)+1+4k2=0,
,,
滿足,
∴滿足條件的直線存在,其方程為
即滿足條件的直線方程為x+2y+2=0或x-2y+2=0.
點(diǎn)評(píng):本題主要考查直線與圓錐曲線的綜合應(yīng)用能力,綜合性強(qiáng),是高考的重點(diǎn),易錯(cuò)點(diǎn)是知識(shí)橢圓的體系不牢固.本題具體涉及到軌跡方程的求法及直線與雙曲線的相關(guān)知識(shí),解題時(shí)要注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)橢圓=1(a>b>0)的左焦點(diǎn)F任作一條與兩坐標(biāo)軸都不垂直的弦AB,若點(diǎn)M在x軸上,且使得MF為△AMB的一條內(nèi)角平分線,則稱點(diǎn)M為該橢圓的“左特征點(diǎn)”,那么“左特征點(diǎn)”M一定是(    )

A.橢圓左準(zhǔn)線與x軸的交點(diǎn)                     B.坐標(biāo)原點(diǎn)

C.橢圓右準(zhǔn)線與x軸的交點(diǎn)                     D.右焦點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練24練習(xí)卷(解析版) 題型:選擇題

過(guò)橢圓+=1(a>b>0)的焦點(diǎn)垂直于x軸的弦長(zhǎng)為,則雙曲線-=1的離心率e的值是(  )

(A) (B)

(C) (D)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆甘肅武威六中高二12月學(xué)段檢測(cè)文科數(shù)學(xué)試題(解析版) 題型:選擇題

已知AB是過(guò)橢圓(a>b>0)的左焦點(diǎn)F1的弦,則⊿ABF2的周長(zhǎng)是(     )

A.a(chǎn)         B.2a           C.3ª          D.4a

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年安徽省皖中地區(qū)示范高中高三聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

若過(guò)橢圓(a>b>0)的焦點(diǎn)且垂直于x軸的直線被橢圓截得的線段長(zhǎng)為,則該橢圓的離心率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年北京市一模試卷及高頻考點(diǎn)透析:推理與證明 幾何證明選講(解析版) 題型:解答題

已知橢圓C:,(a>b>0)的兩焦點(diǎn)分別為F1、F2,,離心率.過(guò)直線l:上任意一點(diǎn)M,引橢圓C的兩條切線,切點(diǎn)為A、B.
(1)在圓中有如下結(jié)論:“過(guò)圓x2+y2=r2上一點(diǎn)P(x,y)處的切線方程為:xx+yy=r2”.由上述結(jié)論類比得到:“過(guò)橢圓(a>b>0),上一點(diǎn)P(x,y)處的切線方程”(只寫類比結(jié)論,不必證明).
(2)利用(1)中的結(jié)論證明直線AB恒過(guò)定點(diǎn)();
(3)當(dāng)點(diǎn)M的縱坐標(biāo)為1時(shí),求△ABM的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案