(本小題滿分12分)
如圖,正方體中, E是的中點(diǎn).
(1)求證:∥平面AEC;
(2)求與平面所成的角.
(1)證明:見解析;(2)直線與平面所成的角為.
【解析】
試題分析: (1)作AC的中點(diǎn)F,連接EF,則根據(jù)三角形的中位線證明線線平行,進(jìn)而得到線面平行的證明。
(2)要利用線面垂直為前提得到斜線的射影,進(jìn)而得到線面角的大小。
解:(1)證明:連結(jié)BD,交AC于點(diǎn)O,連結(jié)EO.
因?yàn)镋、O分別是與的中點(diǎn),
所以O(shè)E∥.
又因?yàn)镺E在平面AEC內(nèi),不在平面AEC內(nèi),
所以∥平面AEC.
(2)因?yàn)檎襟w中,
⊥平面ABCD,所以⊥BD,
又正方形ABCD中,AC⊥BD,
所以BD⊥平面,
所以∠是與平面所成的角.
設(shè)正方體棱長(zhǎng)為a,中,,
所以,所以,
所以直線與平面所成的角為.
考點(diǎn):本題主要考查了考查證明線面平行、線面垂直的方法,直線和平面平行的判定,面面垂直的判定,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。
點(diǎn)評(píng):解決該試題的關(guān)鍵是熟練運(yùn)用線面平行的判定定理和線面垂直的性質(zhì)定理得到線面角的大小,進(jìn)而求解到。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:
(I)他們選擇的項(xiàng)目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤(rùn)與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬元.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com