【題目】已知由樣本數(shù)據(jù)點(diǎn)集合,求得的回歸直線方程為,且,現(xiàn)發(fā)現(xiàn)兩個數(shù)據(jù)點(diǎn)誤差較大,去除后重新求得的回歸直線l的斜率為1.2,則(

A.變量xy具有正相關(guān)關(guān)系B.去除后的回歸方程為

C.去除后y的估計值增加速度變快D.去除后相應(yīng)于樣本點(diǎn)的殘差為0.05

【答案】AB

【解析】

A. 根據(jù)回歸直線方程的x系數(shù)的正負(fù)判斷.B. 根據(jù)去除前后樣本點(diǎn)不變判斷.C. 根據(jù)去除前后x的系數(shù)大小判斷.D.根據(jù)殘差的計算公式判斷.

因?yàn)榛貧w直線方程為,

所以變量xy具有正相關(guān)關(guān)系.A正確.

當(dāng)時,

樣本點(diǎn)為,去掉兩個數(shù)據(jù)點(diǎn)后,樣本點(diǎn)還是

又因?yàn)槿コ笾匦虑蟮玫幕貧w直線l的斜率為1.2,

所以

解得,

所以去除后的回歸方程為,故B正確.

因?yàn)?/span>,所以去除后y的估計值增加速度變慢,故C錯誤.

因?yàn)?/span>,

所以,故D錯誤.

故選:AB

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)α是給定的平面,A,B是不在α內(nèi)的任意兩點(diǎn),則(

A.α內(nèi)存在直線與直線AB異面

B.α內(nèi)存在直線與直線AB相交

C.α內(nèi)存在直線與直線AB平行

D.存在過直線AB的平面與α垂直

E.存在過直線AB的平面與α平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義R在上的函數(shù)為奇函數(shù),并且其圖象關(guān)于x1對稱;當(dāng)x∈(0,1]時,fx)=9x3.若數(shù)列{an}滿足anflog264+n))(nN+);若n≤50時,當(dāng)Sna1+a2+…+an取的最大值時,n_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某芯片公司對今年新開發(fā)的一批 5G 手機(jī)芯片進(jìn)行測評,該公司隨機(jī)調(diào)查了 100 顆芯片,所調(diào)查的芯片得分均在719內(nèi),將所得統(tǒng)計數(shù)據(jù)分為如下:,,, ,六個小組,得到如圖所示的頻率分布直方圖,其中.

1)求這 100 顆芯片評測分?jǐn)?shù)的平均數(shù);

2)芯片公司另選 100 顆芯片交付給某手機(jī)公司進(jìn)行測試,該手機(jī)公司將每顆芯片分別裝在 3 個工程手機(jī)中進(jìn)行初測若 3 個工程手機(jī)的評分都達(dá)到 13 萬分,則認(rèn)定該芯片合格;若 3 個工程手機(jī)中只要有 2 個評分沒達(dá)到 13 萬分,則認(rèn)定該芯片不合格;若 3 個工程手機(jī)中僅 1 個評分沒有達(dá)到 13萬分,則將該芯片再分別置于另外 2 個工程手機(jī)中進(jìn)行二測,二測時,2 個工程手機(jī)的評分都達(dá)到 13萬分,則認(rèn)定該芯片合格;2個工程手機(jī)中只要有 1 個評分沒達(dá)到 13 萬分,手機(jī)公司將認(rèn)定該芯片不合格.已知每顆芯片在各次置于工程手機(jī)中的得分相互獨(dú)立,并且芯片公司對芯片的評分方法及標(biāo)準(zhǔn)與手機(jī)公司對芯片的評分方法及標(biāo)準(zhǔn)都一致(以頻率作為概率).每顆芯片置于一個工程手機(jī)中的測試費(fèi)用均為 160 元,每顆芯片若被認(rèn)定為合格或不合格,將不再進(jìn)行后續(xù)測試.現(xiàn)手機(jī)公司測試部門預(yù)算的測試經(jīng)費(fèi)為 5 萬元,試問預(yù)算經(jīng)費(fèi)是否足夠測試完這 100 顆芯片?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,曲線方程為,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸正半軸的平面直角坐標(biāo)系中,曲線為參數(shù))

1)將化為直角坐標(biāo)系中普通方程,并說明它們分別表示什么曲線;

2)若極坐標(biāo)系中上的點(diǎn)對應(yīng)的極角為,上的動點(diǎn),求中點(diǎn)到直線為參數(shù))距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在信息時代的今天,隨著手機(jī)的發(fā)展,“微信”越來越成為人們交流的一種方法,某機(jī)構(gòu)對“使用微信交流”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽取了100人,他們年齡的頻數(shù)分布及對“使用微信交流”贊成的人數(shù)如下表:(注:年齡單位:歲)

年齡

頻數(shù)

10

30

30

20

5

5

贊成人數(shù)

9

25

24

9

2

1

(1)若以“年齡45歲為分界點(diǎn)”,由以上統(tǒng)計數(shù)據(jù)完成下面的列聯(lián)表,并通過計算判斷是否在犯錯誤的概率不超過0.001的前提下認(rèn)為“使用微信交流的態(tài)度與人的年齡有關(guān)”?

年齡不低于45歲的人數(shù)

年齡低于45歲的人數(shù)

合計

贊成

不贊成

合計

(2)若從年齡在,調(diào)查的人中各隨機(jī)選取1人進(jìn)行追蹤調(diào)查,求選中的2人中贊成“使用微信交流”的人數(shù)恰好為1人的概率.

0.025

0.010

0.005

0.001

3.841

6.635

7.879

10.828

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,橢圓上一點(diǎn),軸上存在一點(diǎn)滿足.

(1)求橢圓的方程;

(2)直線與橢圓相切于第一象限上的點(diǎn),且分別與軸、軸交于兩點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)首項(xiàng)為1的正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列的前n項(xiàng)和為Tn,且,其中p為常數(shù).

1)求p的值;

2)求證:數(shù)列{an}為等比數(shù)列;

3)證明:數(shù)列an,2xan+1,2yan+2成等差數(shù)列,其中x、y均為整數(shù)的充要條件是x1,且y2”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)若處取得極值,求實(shí)數(shù)的值;

2)對任意實(shí)數(shù),都有,求實(shí)數(shù)的取值范圍;

3)當(dāng)時,證明:存在唯一,使得,且.

查看答案和解析>>

同步練習(xí)冊答案