【題目】國家規(guī)定,疫苗在上市前必須經(jīng)過嚴格的檢測,并通過臨床實驗獲得相關(guān)數(shù)據(jù),以保證疫苗使用的安全和有效.某生物制品硏究所將某一型號疫苗用在動物小白鼠身上進行科研和臨床實驗,得到統(tǒng)計數(shù)據(jù)如下:

未感染病毒

感染病毒

總計

未注射疫苗

40

p

x

注射疫苗

60

q

y

總計

100

100

200

現(xiàn)從未注射疫苗的小白鼠中任取1只,取到“感染病毒”的小白鼠的概率為.

(1)求列聯(lián)表中的數(shù)據(jù)p,q,的值;

(2)能否有把握認為注射此種疫苗有效?

(3)在感染病毒的小白鼠中,按未注射疫苗和注射疫苗的比例抽取5只進行病例分析,然后從這五只小白鼠中隨機抽取3只對注射疫苗情況進行核實,求至少抽到2只為未注射疫苗的小白鼠的概率. 附:.

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

【答案】(1)60,40,100,100;

(2)沒有把握認為注射此種疫苗有效;

(3).

【解析】

1)根據(jù)“從未注射疫苗的小白鼠中任取1只,取到“感染病毒”的小白鼠的概率為.”求得,進而求得的值.2)計算的值,由此判斷出沒有把握認為注射此種疫苗有效.(3)利用列舉法和古典概型概率計算公式,計算出所求概率.

(1)由于“從未注射疫苗的小白鼠中任取1只,取到“感染病毒”的小白鼠的概率為.”,即,所以.

(2)由于,所以沒有把握認為注射此種疫苗有效.

(3)由于在感染病毒的小白鼠中,按未注射疫苗和注射疫苗的比例為,故抽取的5只小白鼠中3只未注射疫苗,用表示,2只已注射疫苗,用表示,從這五只小白鼠中隨機抽取3只,可能的情況共有以下10種:,,.

其中至少抽到2只為未注射疫苗的小白鼠的情況有7種.所以至少抽到2只為未注射疫苗的小白鼠的概率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,圓,直線l過點

若直線l被圓所截得的弦長為,求直線l的方程;

若圓P是以為直徑的圓,求圓P與圓的公共弦所在直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《山東省高考改革試點方案》規(guī)定:從2017年秋季高中入學(xué)的新生開始,不分文理科;2020年開始,高考總成績由語數(shù)外3門統(tǒng)考科目和物理、化學(xué)等六門選考科目構(gòu)成.將每門選考科目的考生原始成績從高到低劃分為A、B+、B、C+、C、D+、D、E共8個等級.參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.選考科目成績計入考生總成績時,將A至E等級內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到[91,100]、[81,90]、[71,80]、[61,70]、[51,60]、[41,50]、[31,40]、[21,30]八個分數(shù)區(qū)間,得到考生的等級成績.

某校高一年級共2000人,為給高一學(xué)生合理選科提供依據(jù),對六個選考科目進行測試,其中物理考試原始成績基本服從正態(tài)分布N(60,169).

(Ⅰ)求物理原始成績在區(qū)間(47,86)的人數(shù);

(Ⅱ)按高考改革方案,若從全省考生中隨機抽取3人,記X表示這3人中等級成績在區(qū)間[61,80]的人數(shù),求X的分布列和數(shù)學(xué)期望.

(附:若隨機變量,則,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,平面底面,且在底面正投影點在線段上,,.

(1)證明:

(2)若,所成角的余弦值為,求鈍二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若,討論的單調(diào)性;

(2)若,且對于函數(shù)的圖象上兩點, ,存在,使得函數(shù)的圖象在處的切線.求證;.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓ab>0的離心率,過點的直線與原點的距離為

1求橢圓的方程

2已知定點,若直線與橢圓交于CD兩點是否存在k的值,使以CD為直徑的圓過E點?請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某化工企業(yè)2018年年底投入100萬元,購入一套污水處理設(shè)備。該設(shè)備每年的運轉(zhuǎn)費用是0.5萬元,此外,每年都要花費一定的維護費,第一年的維護費為2萬元,由于設(shè)備老化,以后每年的維護費都比上一年增加2萬元。設(shè)該企業(yè)使用該設(shè)備年的年平均污水處理費用為(單位:萬元)

(1)用表示

(2)當該企業(yè)的年平均污水處理費用最低時,企業(yè)需重新更換新的污水處理設(shè)備。則該企業(yè)幾年后需要重新更換新的污水處理設(shè)備。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形與矩形所在平面相互垂直, , , .

(Ⅰ)求證: 平面;

(Ⅱ)求四棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)在同一個周期內(nèi),當y取最大值1,當時,y取最小值﹣1

(1)求函數(shù)的解析式y=f(x)

(2)函數(shù)y=sinx的圖象經(jīng)過怎樣的變換可得到y=f(x)的圖象?

(3)若函數(shù)f(x)滿足方程f(x)=a(0<a<1),求在[0,2π]內(nèi)的所有實數(shù)根之和.

查看答案和解析>>

同步練習(xí)冊答案