已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,一個(gè)頂點(diǎn)A(0,-1),且右焦點(diǎn)到右準(zhǔn)線的距離為.

(1)求橢圓的方程.

(2)試問是否能找到一條斜率為k(k≠0)的直線l,使l與橢圓交于不同兩點(diǎn)M、N且滿足|AM|=|AN|?若這樣的直線存在,求出k的取值范圍;若不存在,請說明理由.

1、橢圓方程為+y2=1.

2、k∈(-1,0)∪(0,1).


解析:

(1)設(shè)橢圓方程為=1,由已知得b=1,=.

∴c=,a2=3.

∴橢圓方程為+y2=1.

(2)設(shè)M(x1,y1)、N(x2,y2),MN中點(diǎn)P(x0,y0).

兩式相減,得

∴k=-.                                                                   ①

又∵|AM|=|AN|,

∴AP⊥MN.

∴kAP=-,即=-.                                                      ②

聯(lián)立①②,解得

若直線l存在,則P在橢圓內(nèi)部.

+y02<1,從而得k2<1.

∴-1<k<1且k≠0.

∴滿足條件的直線l存在,且k∈(-1,0)∪(0,1).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為
2
2
,且橢圓經(jīng)過圓C:x2+y2-4x+2
2
y=0的圓心C.
(1)求橢圓的方程;
(2)設(shè)直線l過橢圓的焦點(diǎn)且與圓C相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心在原點(diǎn)O,焦點(diǎn)在坐標(biāo)軸上,直線y=2x+1與該橢圓相交于P和Q,且OP⊥OQ,|PQ|=
1011
,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心在原點(diǎn),對稱軸為坐標(biāo)軸,左焦點(diǎn)為F1(-3,0),右準(zhǔn)線方程為x=
253

(1)求橢圓的標(biāo)準(zhǔn)方程和離心率e;
(2)設(shè)P為橢圓上第一象限的點(diǎn),F(xiàn)2為右焦點(diǎn),若△PF1F2為直角三角形,求△PF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心在原點(diǎn),且橢圓過點(diǎn)P(3,2),焦點(diǎn)在坐標(biāo)軸上,長軸長是短軸長的3倍,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心在原點(diǎn),一個(gè)焦點(diǎn)F1(0,-2
2
),且離心率e滿足:
2
3
,e,
4
3
成等比數(shù)列.
(1)求橢圓方程;
(2)直線y=x+1與橢圓交于點(diǎn)A,B.求△AOB的面積.

查看答案和解析>>

同步練習(xí)冊答案