已知A={x|y=log2(x-1)},B={y|y=},則A∩B=

[  ]
A.

(0,+∞)

B.

(1,+∞)

C.

(0,1)

D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:教材完全解讀 高中數(shù)學(xué) 必修5(人教B版課標(biāo)版) 人教B版課標(biāo)版 題型:038

設(shè)a>0,如圖,已知直線l:y=ax及曲線C:y=x2,C上的點(diǎn)Q1的橫坐標(biāo)為a1(0<a1<a),從C上的點(diǎn)Qn(n≥1)作直線平行于x軸,交直線l于點(diǎn)Pn+1作直線平行于y軸,交曲線C于點(diǎn)Qn+1,Qn(n=1,2,3,…)的橫坐標(biāo)構(gòu)成數(shù)列{an}.試求an+1與an的關(guān)系,并求{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年高考數(shù)學(xué)理科(廣東B卷) 題型:044

已知曲線Cyx2與直線lxy20交于兩點(diǎn)A(xA,yA)B(xB,yB),且xAxB.記曲線C在點(diǎn)A和點(diǎn)B之間那一段L與線段AB所圍成的平面區(qū)域(含邊界)D.設(shè)點(diǎn)P(s,t)L上的任一點(diǎn),且點(diǎn)P與點(diǎn)A和點(diǎn)B均不重合.

(1)若點(diǎn)Q是線段AB的中點(diǎn),試求線段PQ的中點(diǎn)M的軌跡方程;

(2)若曲線與點(diǎn)D有公共點(diǎn),試求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:遼寧省錦州中學(xué)2012屆高三上學(xué)期第一次月考數(shù)學(xué)理科試題 題型:044

已知A,B,C是直線l上的不同的三點(diǎn),O是外一點(diǎn),向量,滿足:-(x2+1)·-[ln(2+3x)-y]·=0.記y=f(x).

(1)求函數(shù)y=f(x)的解析式;

(2)若對任意x∈[,],不等式|a-lnx|-ln[(x)-3x]>0恒成立,求實(shí)數(shù)a的取值范圍;

(3)若關(guān)于x的方程f(x)=2x+b在[0,1]上恰有兩個(gè)不同的實(shí)根,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:浙江省杭州十四中2012屆高三2月月考數(shù)學(xué)理科試題 題型:044

已知函數(shù)f(x)=lnx,g(x)=ex

(Ⅰ)若函數(shù)φ(x)=f(x)-,求函數(shù)φ(x)的單調(diào)區(qū)間;

(Ⅱ)設(shè)直線l為函數(shù)yf(x)的圖象上一點(diǎn)A(x0f(x0))處的切線.證明:在區(qū)間(1,+∞)上存在唯一的x0,使得直線l與曲線yg(x)相切.

注:e為自然對數(shù)的底數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:浙江慈溪市2012屆高三5月模擬考試數(shù)學(xué)理科試題 題型:044

已知函數(shù)f(x)=x2-(a+2)x+alnx.(1)當(dāng)a=1時(shí),求函數(shù)f(x)的極值;(2)設(shè)定義在D上的函數(shù)y=g(x)在點(diǎn)P(x0,y0)處的切線方程為l:y=h(x),當(dāng)x≠x0時(shí),若在D內(nèi)恒成立,則稱P為函數(shù)y=g(x)的“Hold點(diǎn)”.當(dāng)a=4時(shí),試問函數(shù)y=f(x)是否存在“Hold點(diǎn)”,若存在,請求出“Hold點(diǎn)”的橫坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案