已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在x=1處的切線為l:3x-y+1=0,當(dāng)x=
2
3
時(shí),y=f(x)有極值.
(1)求a、b、c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.
(1)由f(x)=x3+ax2+bx+c,得
f′(x)=3x2+2ax+b
當(dāng)x=1時(shí),切線l的斜率為3,可得2a+b=0.①
當(dāng)x=
2
3
時(shí),y=f(x)有極值,則f′(
2
3
)
=0,
可得4a+3b+4=0.②
由①、②解得a=2,b=-4.
由于l上的切點(diǎn)的橫坐標(biāo)為x=1,
∴f(1)=4.∴1+a+b+c=4.
∴c=5.
(2)由(1)可得f(x)=x3+2x2-4x+5,
∴f′(x)=3x2+4x-4.
令f′(x)=0,得x=-2,或x=
2
3


∴f(x)在x=-2處取得極大值f(-2)=13.
在x=
2
3
處取得極小值f(
2
3
)
=
95
27

又f(-3)=8,f(1)=4.
∴f(x)在[-3,1]上的最大值為13,最小值為
95
27
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)a∈R,函數(shù)f(x)=(x2-ax-a)ex
(Ⅰ)若a=1,求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(Ⅱ)求函數(shù)f(x)在[-2,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=(x+1)lnx-x+1.
(Ⅰ)若xf′(x)≤x2+ax+1,求a的取值范圍;
(Ⅱ)證明:(x-1)f(x)≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=x-1-lnx
(Ⅰ)求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(Ⅱ)求函數(shù)f(x)的極值;
(Ⅲ)對(duì)?x∈(0,+∞),f(x)≥bx-2恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某地方政府為科技興市,欲將如圖所示的一塊不規(guī)則的非農(nóng)業(yè)用地規(guī)劃建成一個(gè)矩形的高科技工業(yè)園區(qū),已知AB⊥BC,OABC,且AB=BC=6km,AO=3km,曲線段OC是二次函數(shù)y=ax2圖象的一段,如果要使矩形的相鄰兩邊分別落在AB,BC上,且一個(gè)頂點(diǎn)落在曲線段OC上,問(wèn)應(yīng)如何規(guī)劃才能使矩形工業(yè)園區(qū)BQPN的用地面積最大?并求出最大的用地面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=px-
p
x
-2lnx

(Ⅰ)若p=2,求曲線f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若函數(shù)f(x)在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)p的取值范圍;
(Ⅲ)設(shè)函數(shù)g(x)=
2e
x
,若在[1,e]上至少存在一點(diǎn)x0,使得f(x0)>g(x0)成立,求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)f(x)=x3-2x,其中a-1≤x≤a+1,a∈R,設(shè)集合M={(m,f(n))|m,n∈[a-1,a+1]|},若f(x)單調(diào)遞增,則S的最小值為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)f(x)=1-x2+ln(x+1)
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若不等式f(x)>
kx
x+1
-x2(k∈N*)在(0,+∞)上恒成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

曲線與坐標(biāo)軸所圍成圖形面積是(   )
A.4     B.2   C.    D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案