曲線y=x3-2x在點(diǎn)(1,-1)處的切線方程是(   )
A.x-y+2=0B.5x+4y-1=0C.x-y-2=0D.x+y=0
C

專(zhuān)題:計(jì)算題.
分析:根據(jù)導(dǎo)數(shù)的幾何意義求出函數(shù)在x=1處的導(dǎo)數(shù),從而得到切線的斜率,再利用點(diǎn)斜式方程寫(xiě)出切線方程即可.
解答:解:y′=x3-2x
y′|x=1=-1
而切點(diǎn)的坐標(biāo)為(1,1)
∴曲線y=x3-2x在x=1的處的切線方程為x-y-2=0
故答案為:C.
點(diǎn)評(píng):本題主要考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,考查運(yùn)算求解能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
用長(zhǎng)為18 cm的鋼條圍成一個(gè)長(zhǎng)方體形狀的框架,要求長(zhǎng)方體的長(zhǎng)與寬之比為2:1,問(wèn)該長(zhǎng)方體的長(zhǎng)、寬、高各為多少時(shí),其體積最大?最大體積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分10分)設(shè)函數(shù),其中
(Ⅰ)當(dāng)時(shí),求不等式的解集;
(Ⅱ)若不等式的解集為,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)已知f(x)=ex-ax-1.
(1)求f(x)的單調(diào)增區(qū)間;
(2)若f(x)在定義域R內(nèi)單調(diào)遞增,求a的取值范圍;
(3)是否存在a,使f(x)在(-∞,0]上單調(diào)遞減,在[0,+∞)上單調(diào)遞增?若存在,求出a的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

4、=(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

對(duì)于任意的,函數(shù)在區(qū)間上總存在極值,求m的范圍(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)已知,設(shè)函數(shù),
(Ⅰ)求函數(shù)的最大值;
(Ⅱ)若是自然對(duì)數(shù)的底數(shù),當(dāng)時(shí),是否存在常數(shù)、,使得不等式對(duì)于任意的正實(shí)數(shù)都成立?若存在,求出、的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)函數(shù),則等于
A.0B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù)的最小值為           

查看答案和解析>>

同步練習(xí)冊(cè)答案