甲乙兩個(gè)班級(jí)均為40人,進(jìn)行一門考試后,按學(xué)生考試成績及格與不及格進(jìn)行統(tǒng)計(jì),甲班及格人數(shù)為36人,乙班及格人數(shù)為24人.
(Ⅰ)根據(jù)以上數(shù)據(jù)建立一個(gè)2×2的列聯(lián)表;
(Ⅱ)試判斷能否有99.5%的把握認(rèn)為“考試成績與班級(jí)有關(guān)”?參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
;n=a+b+c+d
P(K2>k) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828
考點(diǎn):獨(dú)立性檢驗(yàn)的應(yīng)用
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:(1)由題意知按學(xué)生考試成績及格與不及格進(jìn)行統(tǒng)計(jì),甲班及格人數(shù)為36人,乙班及格人數(shù)為24,從而做出甲班不及格的人數(shù)是40-36和乙班不及格的人數(shù)是40-24,列出表格,填入數(shù)據(jù).
(2)根據(jù)所給的數(shù)據(jù),代入求觀測(cè)值的公式,求出觀測(cè)值,把觀測(cè)值與臨界值比較,得到有1-0.005=99.5%的把握認(rèn)為“成績與班級(jí)有關(guān)系”.
解答: 解:(Ⅰ)2×2列聯(lián)表如下:
不及格 及格 總計(jì)
甲班 4 36 40
乙班 16 24 40
總計(jì) 20 60 80
(Ⅱ)K2=
80×(4×24-16×36)2
40×40×20×60
=9.6,
由P(K2≥7.879)=0.005,
所以有99.5%的把握認(rèn)為“成績與班級(jí)有關(guān)系”.
點(diǎn)評(píng):本題考查了獨(dú)立性檢驗(yàn)基本思想,考查了列聯(lián)表的作法,計(jì)算相關(guān)指數(shù)的觀測(cè)值時(shí)要細(xì)心.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的偶函數(shù)y=f(x)滿足:①f(x)=f(2-x);②當(dāng)0≤x≤1時(shí),f(x)=x2
(1)求f(5.5)的值;
(2)證明:x∈R時(shí),f(x+2)=f(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某海域設(shè)立東西方向兩個(gè)觀測(cè)點(diǎn)A、B,相距
20
3
3
海里.現(xiàn)接到一艘漁船發(fā)出的求救訊號(hào),測(cè)出該船位于點(diǎn)A北偏東30°,點(diǎn)B北偏西60°的C點(diǎn).立刻通知位于B觀測(cè)點(diǎn)南偏西60°且與B點(diǎn)相距16海里的D處的救援船前去營救,若救援船以28海里/小時(shí)的航速前往,問需要多長時(shí)間到達(dá)C處?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=
1+x
+
2-2x
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠為了對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,獲得單價(jià)xi(元)與銷量yi(件)的數(shù)據(jù)資料如下表:
單價(jià)x(元) 8 8.2 8.4 8.6 8.8 9
銷量y(件) 90 84 83 80 75 68
(Ⅰ)求單價(jià)x對(duì)銷量y的回歸直線方程
y
=bx+a,(其中b=-20,a=
.
y
-b
.
x

(Ⅱ)為了使銷量達(dá)到100件,則單價(jià)應(yīng)定為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:y=kx與圓C1:(x-1)2+y2=1相交于A、B兩點(diǎn),圓C2與圓C1相外切,且與直線l相切于點(diǎn)M(3,
3
),求
(1)k的值
(2)|AB|的值
(3)圓C2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(2,0),B(5,9),動(dòng)點(diǎn)D滿足條件:
OD
=t
OA
+(1-t)
OB
,t∈R.
(1)求動(dòng)點(diǎn)D的軌跡的參數(shù)方程(以t為參數(shù));
(2)動(dòng)點(diǎn)D的軌跡與拋物線y2=9x相交于P,Q兩點(diǎn),求線段PQ中點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos2x-2
3
sinx•cosx.
(1)求f(x)最小正周期及最值;  
(2)若α∈(
π
2
,π),且f(α)=2,求f(α+
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過圓C:(x+1)2+(y-2)2=5上一點(diǎn)P(1,1),且與圓C相切的直線的方程是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案