如圖,在空間直角坐標(biāo)系中,已知直三棱柱的頂點(diǎn)A在x軸上,AB平行于y軸,側(cè)棱AA1平行于z軸.當(dāng)頂點(diǎn)C在y軸正半軸上運(yùn)動(dòng)時(shí),以下關(guān)于此直三棱柱三視圖的表述正確的是


  1. A.
    該三棱柱主視圖的投影不發(fā)生變化
  2. B.
    該三棱柱左視圖的投影不發(fā)生變化
  3. C.
    該三棱柱俯視圖的投影不發(fā)生變化
  4. D.
    該三棱柱三個(gè)視圖的投影都不發(fā)生變化
B
分析:從正面看到的圖叫做主視圖,從左面看到的圖叫做左視圖,從上面看到的圖叫做俯視圖,根據(jù)圖中C點(diǎn)對(duì)三棱柱的結(jié)構(gòu)影響進(jìn)一步判斷.
解答:A、該三棱柱主視圖的長(zhǎng)度是AB或者AC在y軸上的投影,隨C點(diǎn)得運(yùn)動(dòng)發(fā)生變化,故錯(cuò)誤.
B、設(shè)O1是z軸上一點(diǎn),且AA1=OO1,則該三棱柱左視圖就是矩形AOO1A1,圖形不變.故正確.
C、該三棱柱俯視圖就是△ABC,隨C點(diǎn)得運(yùn)動(dòng)發(fā)生變化,故錯(cuò)誤.
D、與 B矛盾.故錯(cuò)誤.
故選B
點(diǎn)評(píng):本題考查幾何體的三視圖,借助于空間直角坐標(biāo)系.本題是一個(gè)比較好的題目,考查的知識(shí)點(diǎn)比較全,但是又是最基礎(chǔ)的知識(shí)點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(選修4-4:坐標(biāo)系與參數(shù)方程) (本小題滿分10分)

在直角坐標(biāo)系xoy中,直線的參數(shù)方程為(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為.

(Ⅰ)求圓C的直角坐標(biāo)方程;

(Ⅱ)設(shè)圓C與直線交于點(diǎn)A、B,若點(diǎn)P的坐標(biāo)為,求|PA|+|PB|.

23(本小題滿分10分)

 已知三棱錐P-ABC中,PA⊥平面ABC,AB⊥AC,,N為AB上一點(diǎn),AB=4AN, M、S分別為PB,BC的中點(diǎn).以A為原點(diǎn),射線AB,AC,AP分別為x,y,z軸正向建立如圖空間直角坐標(biāo)系.

(Ⅰ)證明:CM⊥SN;

(Ⅱ)求SN與平面CMN所成角的大小.

24.(本小題滿分10分)

將一枚硬幣連續(xù)拋擲次,每次拋擲互不影響. 記正面向上的次數(shù)為奇數(shù)的概率為,正面向上的次數(shù)為偶數(shù)的概率為.

 (Ⅰ)若該硬幣均勻,試求;

 (Ⅱ)若該硬幣有暇疵,且每次正面向上的概率為,試比較的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(選修4-4:坐標(biāo)系與參數(shù)方程) (本小題滿分10分)

在直角坐標(biāo)系xoy中,直線的參數(shù)方程為(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為.

(Ⅰ)求圓C的直角坐標(biāo)方程;

(Ⅱ)設(shè)圓C與直線交于點(diǎn)A、B,若點(diǎn)P的坐標(biāo)為,求|PA|+|PB|.

23(本小題滿分10分)

 已知三棱錐P-ABC中,PA⊥平面ABC,AB⊥AC,,N為AB上一點(diǎn),AB=4AN, M、S分別為PB,BC的中點(diǎn).以A為原點(diǎn),射線AB,AC,AP分別為x,y,z軸正向建立如圖空間直角坐標(biāo)系.

(Ⅰ)證明:CM⊥SN;

(Ⅱ)求SN與平面CMN所成角的大小.

24.(本小題滿分10分)

將一枚硬幣連續(xù)拋擲次,每次拋擲互不影響. 記正面向上的次數(shù)為奇數(shù)的概率為,正面向上的次數(shù)為偶數(shù)的概率為.

 (Ⅰ)若該硬幣均勻,試求

 (Ⅱ)若該硬幣有暇疵,且每次正面向上的概率為,試比較的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年度新課標(biāo)高二上學(xué)期數(shù)學(xué)單元測(cè)試4 題型:解答題

 

 
   (理)如圖,建立空間直角坐標(biāo)系數(shù)xOyz,棱長(zhǎng)為2的正方體OABC—O′A′B′C′被一平面截得四邊形MNPQ,其中N、Q分別是BB′、OO′的中點(diǎn),

   (Ⅰ)求k的值;

   (Ⅱ)求

 

 

 

 

(文)某村計(jì)劃建造一個(gè)室內(nèi)面積為800m2的矩形蔬菜溫室. 在溫室內(nèi),種植蔬菜時(shí)需要沿左、右兩側(cè)與前側(cè)內(nèi)墻各保留1m寬的空地作為通道,后側(cè)內(nèi)墻不留空地(如圖所示),問(wèn)當(dāng)溫室的長(zhǎng)是多少米時(shí),能使蔬菜的種植面積最大?

 
 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案