【題目】已知數(shù)列{an}是遞增的等比數(shù)列,且a1+a4=9,a2a3=8.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)Sn為數(shù)列{an}的前n項和,bn= ,求數(shù)列{bn}的前n項和Tn

【答案】
(1)解:∵數(shù)列{an}是遞增的等比數(shù)列,且a1+a4=9,a2a3=8.

∴a1+a4=9,a1a4=a2a3=8.

解得a1=1,a4=8或a1=8,a4=1(舍),

解得q=2,即數(shù)列{an}的通項公式an=2n1


(2)解:Sn= =2n﹣1,

∴bn= = = ,

∴數(shù)列{bn}的前n項和Tn= +…+ = =1﹣


【解析】(1)根據(jù)等比數(shù)列的通項公式求出首項和公比即可,求數(shù)列{an}的通項公式;(2)求出bn= ,利用裂項法即可求數(shù)列{bn}的前n項和Tn
【考點精析】解答此題的關(guān)鍵在于理解數(shù)列的前n項和的相關(guān)知識,掌握數(shù)列{an}的前n項和sn與通項an的關(guān)系

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知, 為拋物線上的兩個動點,其中,且

(1)求證:線段的垂直平分線恒過定點,并求出點坐標;

(2)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l1:y=kx﹣1與雙曲線x2﹣y2=1的左支交于A,B兩點.
(1)求斜率k的取值范圍;
(2)若直線l2經(jīng)過點P(﹣2,0)及線段AB的中點Q且l2在y軸上截距為﹣16,求直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,以橢圓的一個短軸端點及兩個焦點構(gòu)成的三角形的面積為,圓C方程為.

(1)求橢圓及圓C的方程;

(2)過原點O作直線l與圓C交于A,B兩點,若,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列滿足

(1)求證:數(shù)列為等差數(shù)列;

(2)求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖已知拋物線的焦點坐標為,過的直線交拋物線兩點,直線分別與直線相交于兩點

(1)求拋物線的方程;

(2)證明△ABO與MNO的面積之比為定值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a、b、c是△ABC中∠A、∠B、∠C的對邊, ,b=6,
(1)求c;
(2)求 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖莖葉圖記錄了甲、乙兩組各四名同學的植樹棵樹.乙組記錄中有一個數(shù)據(jù)模糊,無法確認,在圖中以X表示.
(注:方差 ,其中 為x1 , x2 , …xn的平均數(shù))

(1)如果X=8,求乙組同學植樹棵樹的平均數(shù)和方差;
(2)如果X=9,分別從甲、乙兩組中隨機選取一名同學,求這兩名同學的植樹總棵數(shù)為19的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,某拋物線的頂點為原點,焦點為圓心,經(jīng)過點的直線交圓, 兩點,交此拋物線于, 兩點,其中, 在第一象限, , 在第二象限.

(1)求該拋物線的方程;

(2)是否存在直線,使的等差中項?若存在,求直線的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案