橢圓以雙曲線的實(shí)軸為短軸、虛軸為長(zhǎng)軸,且與拋物線交于兩點(diǎn).
(1)求橢圓的方程及線段的長(zhǎng);
(2)在與圖像的公共區(qū)域內(nèi),是否存在一點(diǎn),使得的弦與的弦相互垂直平分于點(diǎn)?若存在,求點(diǎn)坐標(biāo),若不存在,說明理由.
(1) ,;(2)不存在這樣的點(diǎn).
解析試題分析:(1) 求橢圓的方程,只需求出即可,由雙曲線得,,故得橢圓,從而得橢圓的方程為,求線段的長(zhǎng),只需求出的坐標(biāo),由橢圓的方程,及拋物線的方程,聯(lián)立方程組解得,從而可得線段的長(zhǎng);(2)這是探索性命題,一般假設(shè)存在,可設(shè)出,代入橢圓的方程,兩式作差,得,設(shè)出,代入拋物線,兩式作差,得,的弦與的弦相互垂直得,,從而得到,由題設(shè)條件,來判斷點(diǎn)是否存.
試題解析:(1)橢圓:;聯(lián)立方程組解得,所以.
(2)假設(shè)存在,由題意將坐標(biāo)帶入做差得,將坐標(biāo)帶入得,,故滿足條件的點(diǎn)在拋物線外,所以不存在這樣的點(diǎn).
考點(diǎn):橢圓的方程,直線與二次曲線位置關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知平面上的動(dòng)點(diǎn)P(x,y)及兩個(gè)定點(diǎn)A(-2,0),B(2,0),直線PA,PB的斜率分別為K1,K2且K1K2=-
(1).求動(dòng)點(diǎn)P的軌跡C方程;
(2).設(shè)直線L:y=kx+m與曲線C交于不同兩點(diǎn),M,N,當(dāng)OM⊥ON時(shí),求O點(diǎn)到直線L的距離(O為坐標(biāo)原點(diǎn))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓 (a>b>0)的上、下頂點(diǎn)分別為A、B,已知點(diǎn)B在直線l:上,且橢圓的離心率e =.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)P是橢圓上異于A、B的任意一點(diǎn),PQ⊥y軸,Q為垂足,M為線段PQ中點(diǎn),直線AM交直線l于點(diǎn)C,N為線段BC的中點(diǎn),求證:OM⊥MN.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
給定橢圓:,稱圓心在原點(diǎn),半徑為的圓是橢圓的“準(zhǔn)圓”.若橢圓的一個(gè)焦點(diǎn)為,其短軸上的一個(gè)端點(diǎn)到的距離為.
(1)求橢圓的方程和其“準(zhǔn)圓”方程;
(2)點(diǎn)是橢圓的“準(zhǔn)圓”上的動(dòng)點(diǎn),過點(diǎn)作橢圓的切線交“準(zhǔn)圓”于點(diǎn).
(。┊(dāng)點(diǎn)為“準(zhǔn)圓”與軸正半軸的交點(diǎn)時(shí),求直線的方程并證明;
(ⅱ)求證:線段的長(zhǎng)為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:的離心率為,過橢圓右焦點(diǎn)的直線與橢圓交于點(diǎn)(點(diǎn)在第一象限).
(1)求橢圓的方程;
(2)已知為橢圓的左頂點(diǎn),平行于的直線與橢圓相交于兩點(diǎn).判斷直線是否關(guān)于直線對(duì)稱,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線.
(1)若圓心在拋物線上的動(dòng)圓,大小隨位置而變化,但總是與直線相切,求所有的圓都經(jīng)過的定點(diǎn)坐標(biāo);
(2)拋物線的焦點(diǎn)為,若過點(diǎn)的直線與拋物線相交于兩點(diǎn),若,求直線的斜率;
(3)若過正半軸上點(diǎn)的直線與該拋物線交于兩點(diǎn),為拋物線上異于的任意一點(diǎn),記連線的斜率為試求滿足成等差數(shù)列的充要條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓E:=1(a>b>0)的左焦點(diǎn)為F1,右焦點(diǎn)為F2,離心率e=.過F1的直線交橢圓于A、B兩點(diǎn),且△ABF2的周長(zhǎng)為8.
(1)求橢圓E的方程;
(2)設(shè)動(dòng)直線l:y=kx+m與橢圓E有且只有一個(gè)公共點(diǎn)P,且與直線x=4相交于點(diǎn)Q.試探究:在坐標(biāo)平面內(nèi)是否存在定點(diǎn)M,使得以PQ為直徑的圓恒過點(diǎn)M?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,過拋物線C:y2=4x上一點(diǎn)P(1,-2)作傾斜角互補(bǔ)的兩條直線,分別與拋物線交于點(diǎn)A(x,y1),B(x2,y2).
(1)求y1+y2的值;
(2)若y1≥0,y2≥0,求△PAB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線l經(jīng)過點(diǎn)(1,0)且一個(gè)方向向量d=(1,1).橢圓C:=1(m>1)的左焦點(diǎn)為F1.若直線l與橢圓C交于A,B兩點(diǎn),滿足·=0,求實(shí)數(shù)m的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com