【題目】等差數(shù)列首項和公差都是,記的前n項和為,等比數(shù)列各項均為正數(shù),公比為q,記的前n項和為

1)寫出構(gòu)成的集合A;

2)若將中的整數(shù)項按從小到大的順序構(gòu)成數(shù)列,求的一個通項公式;

3)若q為正整數(shù),問是否存在大于1的正整數(shù)k,使得同時為(1)中集合A的元素?若存在,寫出所有符合條件的的通項公式,若不存在,請說明理由.

【答案】1;(2n為奇數(shù),;n為偶數(shù),;(3)存在;.

【解析】

1)直接由等差數(shù)列的求和公式得到,再把分別代入,即可求出集合;(2)寫出,根據(jù)整數(shù)項構(gòu)成,得到的整數(shù)倍,從而得到的通項;(3)根據(jù)的前n項和為,根據(jù)同時為(1)中集合A的元素,進行分類討論,從而得到的通項公式.

1)因為等差數(shù)列的首項和公差都是

所以.

分別代入上式,

得到;

2)由(1)得,

因為中的整數(shù)項按從小到大的順序構(gòu)成數(shù)列,

所以的整數(shù)倍,

①當(dāng),即時,

此時的奇數(shù)項,所以

所以,

②當(dāng)時,

此時的偶數(shù)項,所以

所以

綜上所述,為奇數(shù),;為偶數(shù),;

3)①當(dāng)時,,,

所以,

同時為(1)中集合A的元素,

所以,,得,

所以,

所以

②當(dāng)時,

所以,

因為為正整數(shù),正整數(shù)大于,

所以i)當(dāng)時,,

得到,此時,,

所以,得

;

ii)當(dāng)時,,得,此時,

所以,得

;

iii)當(dāng),時,找不到滿足條件的.

綜上所述,存在符合條件的

通項公式為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個焦點為、的等差中項,其中、都是正數(shù),過點的直線與原點的距離為.

1)求橢圓的方程;

2)點是橢圓上一動點,定點,求面積的最大值;

3)已知定點,直線與橢圓交于、相異兩點.證明:對任意的,都存在實數(shù),使得以線段為直徑的圓過.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的短軸長為2,離心率

1)求橢圓方程;

2)若直線與橢圓交于不同的兩點,與圓相切于點,

①證明:(其中為坐標(biāo)原點);

②設(shè),求實數(shù)的取值范圍..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某快遞公司收取快遞費用的標(biāo)準(zhǔn)是:重量不超過的包裹收費元;重量超過的包裹,除收費元之外,超過的部分,每超出(不足,按計算)需再收元.該公司將最近承攬的件包裹的重量統(tǒng)計如下:

包裹重量(單位:

包裹件數(shù)

公司對近天,每天攬件數(shù)量統(tǒng)計如下表:

包裹件數(shù)范圍

包裹件數(shù)

(近似處理)

天數(shù)

以上數(shù)據(jù)已做近似處理,并將頻率視為概率.

(1)計算該公司未來天內(nèi)恰有天攬件數(shù)在之間的概率;

(2)(i)估計該公司對每件包裹收取的快遞費的平均值;

(ii)公司將快遞費的三分之一作為前臺工作人員的工資和公司利潤,剩余的用作其他費用.目前前臺有工作人員人,每人每天攬件不超過件,工資元.公司正在考慮是否將前臺工作人員裁減人,試計算裁員前后公司每日利潤的數(shù)學(xué)期望,并判斷裁員是否對提高公司利潤更有利?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次不等式ax2+2x+b>0的解集為{x|x≠c},則(其中a+c≠0)的取值范圍為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在其定義域內(nèi)有兩個不同的極值點.

1)求函數(shù)a的取值范圍;

2)記函數(shù)的兩個極值點為,,且,證明對任意實數(shù),都有不等式成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓Cab>0)的兩個焦點分別為F1,F2,離心率為,過F1的直線l與橢C交于M,N兩點,且MNF2的周長為8.

(1)求橢圓C的方程;

(2)若直線ykxb與橢圓C分別交于A,B兩點,且OAOB,試問點O到直線AB的距離是否為定值,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著科技的發(fā)展,網(wǎng)購已經(jīng)逐漸融入了人們的生活.在家里面不用出門就可以買到自己想要的東西,在網(wǎng)上付款即可,兩三天就會送到自己的家門口,如果近的話當(dāng)天買當(dāng)天就能送到,或者第二天就能送到,所以網(wǎng)購是非常方便的購物方式.某公司組織統(tǒng)計了近五年來該公司網(wǎng)購的人數(shù)(單位:人)與時間(單位:年)的數(shù)據(jù),列表如下:

1

2

3

4

5

24

27

41

64

79

(1)依據(jù)表中給出的數(shù)據(jù),是否可用線性回歸模型擬合的關(guān)系,請計算相關(guān)系數(shù)并加以說明(計算結(jié)果精確到0.01).(若,則線性相關(guān)程度很高,可用線性回歸模型擬合)

附:相關(guān)系數(shù)公式 ,參考數(shù)據(jù).

(2)建立關(guān)于的回歸方程,并預(yù)測第六年該公司的網(wǎng)購人數(shù)(計算結(jié)果精確到整數(shù)).

(參考公式: ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中,為自然對數(shù)的底數(shù).

(1)當(dāng)時,證明:對

(2)若函數(shù)上存在極值,求實數(shù)的取值范圍。

查看答案和解析>>

同步練習(xí)冊答案