已知函數(shù)

(1)當(dāng),且時(shí),求證: 

(2)是否存在實(shí)數(shù),使得函數(shù)的定義域、值域都是?若存在,則求出的值,若不存在,請(qǐng)說明理由。

 

【答案】

解:(1),,

所以在(0,1)內(nèi)遞減,在(1,+)內(nèi)遞增。

,且。

                           

(2)不存在滿足條件的實(shí)數(shù)。

                                               

①當(dāng)時(shí),在(0,1)內(nèi)遞減,

,所以不存在。         …………………………7分

②當(dāng)時(shí),在(1,+)內(nèi)遞增,

是方程的根。

而方程無實(shí)根。所以不存在。               …………………………10分

③當(dāng)時(shí), 在(a,1)內(nèi)遞減,在(1,b)內(nèi)遞增,所以

由題意知,所以不存在。

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖南省益陽市高三第九次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

(1)當(dāng)=時(shí),求曲線在點(diǎn)(,)處的切線方程。

(2)  若函數(shù)在(1,)上是減函數(shù),求實(shí)數(shù)的取值范圍;

(3)是否存在實(shí)數(shù)若不存在,說明理由。若存在,求出的值,并加以證明。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省金華十校高三上學(xué)期期末考試文科數(shù)學(xué)(解析版) 題型:解答題

(本小題滿分15分)

已知函數(shù)

(1)當(dāng)a=1時(shí),求函數(shù)在點(diǎn)(1,-2)處的切線方程;

(2)若函數(shù)上的圖象與直線總有兩個(gè)不同交點(diǎn),求實(shí)數(shù)a的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三第一次模擬考試文科數(shù)學(xué) 題型:解答題

(本小題滿分14分)

已知函數(shù)

(1)當(dāng)a=1時(shí),求在區(qū)間[1,e]上的最大值和最小值;

(2)若在區(qū)間上,函數(shù)的圖象恒在直線下方,求a的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三第二次月考理科數(shù)學(xué)試卷 題型:解答題

已知函數(shù).

(1)當(dāng),時(shí),試用含的式子表示,并討論的單調(diào)區(qū)間;

(2)若有零點(diǎn),,且對(duì)函數(shù)定義域內(nèi)一切滿足的實(shí)數(shù).

①求的表達(dá)式;

②當(dāng)時(shí),求函數(shù)的圖象與函數(shù)的圖象的交點(diǎn)坐標(biāo)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案