分析 由已知及正弦定理,三角形內(nèi)角和定理,兩角和的正弦函數(shù)公式可得:$\sqrt{3}$sinBcosA=sinB,結合sinB≠0,可求cosA,利用同角三角函數(shù)基本關系式可求sinA,tanA,進而利用兩角差的正切函數(shù)公式即可計算得解.
解答 解:∵$({\sqrt{3}b-c})cosA=acosC$,
∴由正弦定理可得:$\sqrt{3}$sinBcosA-sinCcosA=sinAcosC,
∴$\sqrt{3}$sinBcosA=sinAcosC+sinCcosA=sin(A+C)=sinB,
∵B為三角形內(nèi)角,sinB≠0,
∴cosA=$\frac{\sqrt{3}}{3}$,可得sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{\sqrt{6}}{3}$,tanA=$\frac{sinA}{cosA}$=$\sqrt{2}$,
∴$tan({A-\frac{π}{4}})$=$\frac{tanA-1}{1+tanA}$=$\frac{\sqrt{2}-1}{\sqrt{2}+1}$=$3-2\sqrt{2}$.
故答案為:$3-2\sqrt{2}$.
點評 本題主要考查了正弦定理,三角形內(nèi)角和定理,兩角和的正弦函數(shù)公式,同角三角函數(shù)基本關系式,兩角差的正切函數(shù)公式在解三角形中的應用,考查了轉化思想,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3π+$\sqrt{2}$π | B. | 3π+2$\sqrt{2}$π | C. | 6π+2$\sqrt{2}$π | D. | 6π+$\sqrt{2}$π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 10n-2 | B. | 10n-1 | C. | ${10^{{2^{n-1}}}}$ | D. | ${2^{{2^{n-1}}}}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 399-5051 | B. | 3100-5051 | C. | 3101-5051 | D. | 3102-5051 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com