(理科)設(shè)ξ是一個(gè)離散型隨機(jī)變量.
(1)若ξ~B(n,p),且E(3ξ+2)=9.2,D(3ξ+2)=12.96,則n、p的值分別為
6
6
0.4
0.4
;
(2)若ξ的分布列如表,則Eξ=
3-3
3
4
3-3
3
4
ξ -1 0 1
P
3
4
1-3a 2a2
分析:(1)由題意可得:E(3ξ+2)=3Eξ+2=9.2,D(3ξ+2)=9Dξ=12.96,再結(jié)合Eξ=np,Dξ=np(1-p),進(jìn)而求出答案.
(2)由
3
4
+(1-3a)+2a2=1,可得a=
3-
3
4
,再結(jié)合離散型隨機(jī)變量的期望公式可得答案.
解答:解:(1)因?yàn)棣巍獴(n,p),
所以Eξ=np,Dξ=np(1-p)…①
因?yàn)镋(3ξ+2)=9.2,D(3ξ+2)=12.96,
所以E(3ξ+2)=3Eξ+2=9.2,D(3ξ+2)=9Dξ=12.96,
所以Eξ=2.4,Dξ=1.44…②
所以由①②解得:n=6,p=0.4.
(2)因?yàn)?span id="fl1bpvt" class="MathJye">
3
4
+(1-3a)+2a2=1,
所以a=
3+
3
4
(舍去)或a=
3-
3
4

所以Eξ=-1×
3
4
+0×(1-3×
3-
3
4
)+2×(
3-
3
4
)
2
=
3-3
3
4

故答案為:6;0.4;
3-3
3
4
點(diǎn)評(píng):解決此類問題的關(guān)鍵是熟練掌握離散型隨機(jī)變量的分布列與數(shù)學(xué)期望,以及二項(xiàng)分布的期望與方差的計(jì)算公式,此題屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)拋物線C1:y2=4mx(m>0)的準(zhǔn)線與x軸交于點(diǎn)F1,焦點(diǎn)為F2;橢圓C2以F1、F2為焦點(diǎn),離心率e=
12

(I)(文科做)當(dāng)m=1時(shí),
①求橢圓C2的標(biāo)準(zhǔn)方程;
②若直線l與拋物線交于A、B兩點(diǎn),且線段AB恰好被點(diǎn)P(3,2)平分,設(shè)直線l與橢圓C2交于M、N兩點(diǎn),求線段MN的長;
(II)(僅理科做)設(shè)拋物線C1與橢圓C2的一個(gè)交點(diǎn)為Q,是否存在實(shí)數(shù)m,,使得△QF1F2的邊長是連續(xù)的自然數(shù)?若存在,求出這樣的實(shí)數(shù)m的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

多向飛碟是奧運(yùn)會(huì)的競賽項(xiàng)目,它是由拋靶機(jī)把碟靶(射擊的目標(biāo))在一定范圍內(nèi)從不同的方向飛出,每拋出一個(gè)碟靶,就允許運(yùn)動(dòng)員射擊兩次,直到擊中為止.一運(yùn)動(dòng)員在進(jìn)行訓(xùn)練時(shí),每一次射擊命中碟靶的概率P與運(yùn)動(dòng)員離碟靶的距離S(米)成反比,現(xiàn)有一碟靶拋出的距離S(米)與飛行時(shí)間t(秒)滿足S=15(t+1),(0≤t≤4).假設(shè)運(yùn)動(dòng)員在碟靶飛出后0.5秒進(jìn)行第一次射擊,且命中的概率為0.8,如果他發(fā)現(xiàn)沒有命中,則通過迅速調(diào)整,在第一次射擊后經(jīng)過0.5秒進(jìn)行第二次射擊.
理科:(1)設(shè)該運(yùn)動(dòng)員命中碟靶的次數(shù)為ξ,求ξ的分布列;(2)求Eξ和Dξ.
文科:求該運(yùn)動(dòng)員命中碟靶的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)拋物線的準(zhǔn)線與軸交于點(diǎn),焦點(diǎn)為;橢圓 為焦點(diǎn),離心率。

        (I)當(dāng)時(shí),①求橢圓的標(biāo)準(zhǔn)方程;②若直線與拋物線交于兩點(diǎn),且線段 恰好被點(diǎn)平分,設(shè)直線與橢圓交于兩點(diǎn),求線段的長;

       (II)(僅理科做)設(shè)拋物線與橢圓的一個(gè)交點(diǎn)為,是否存在實(shí)數(shù),使得的邊長是連續(xù)的自然數(shù)?若存在,求出這樣的實(shí)數(shù)的值;若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)拋物線C1:y2=4mx(m>0)的準(zhǔn)線與x軸交于點(diǎn)F1,焦點(diǎn)為F2;橢圓C2以F1、F2為焦點(diǎn),離心率e=
1
2

(I)(文科做)當(dāng)m=1時(shí),
①求橢圓C2的標(biāo)準(zhǔn)方程;
②若直線l與拋物線交于A、B兩點(diǎn),且線段AB恰好被點(diǎn)P(3,2)平分,設(shè)直線l與橢圓C2交于M、N兩點(diǎn),求線段MN的長;
(II)(僅理科做)設(shè)拋物線C1與橢圓C2的一個(gè)交點(diǎn)為Q,是否存在實(shí)數(shù)m,,使得△QF1F2的邊長是連續(xù)的自然數(shù)?若存在,求出這樣的實(shí)數(shù)m的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

多向飛碟是奧運(yùn)會(huì)的競賽項(xiàng)目,它是由拋靶機(jī)把碟靶(射擊的目標(biāo))在一定范圍內(nèi)從不同的方向飛出,每拋出一個(gè)碟靶,就允許運(yùn)動(dòng)員射擊兩次,直到擊中為止.一運(yùn)動(dòng)員在進(jìn)行訓(xùn)練時(shí),每一次射擊命中碟靶的概率P與運(yùn)動(dòng)員離碟靶的距離S(米)成反比,現(xiàn)有一碟靶拋出的距離S(米)與飛行時(shí)間t(秒)滿足S=15(t+1),(0≤t≤4).假設(shè)運(yùn)動(dòng)員在碟靶飛出后0.5秒進(jìn)行第一次射擊,且命中的概率為0.8,如果他發(fā)現(xiàn)沒有命中,則通過迅速調(diào)整,在第一次射擊后經(jīng)過0.5秒進(jìn)行第二次射擊.
理科:(1)設(shè)該運(yùn)動(dòng)員命中碟靶的次數(shù)為ξ,求ξ的分布列;(2)求Eξ和Dξ.
文科:求該運(yùn)動(dòng)員命中碟靶的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案