9.某校對高二年級選學(xué)生物的學(xué)生的某次測試成績進(jìn)行了統(tǒng)計(jì),隨機(jī)抽取了m名學(xué)生的成績作為樣本,根據(jù)此數(shù)據(jù)作出了頻率分布統(tǒng)計(jì)表和頻率分布直方圖如下:
分組頻數(shù)頻率
[60,70)160.2
[70,80)50n
[80,90)10P
[90,100]40.05
合計(jì)MI
(I)求表中n,p的值和頻率分布直方圖中a的值;
(II)如果用分層抽樣的方法,從樣本成績在[60,70]和[90,100]的學(xué)生中共抽取5人,再從5人中選2人,求這2人成績在[60,70]的概率.

分析 (Ⅰ)由頻率=$\frac{頻數(shù)}{總數(shù)}$,結(jié)合頻率分布表和頻率分布直方圖,能求出表中n,p的值和頻率分布直方圖中a的值.
(Ⅱ)樣本分?jǐn)?shù)在[60,70)中的有16人,在[90,100)中的有4人,用分層抽樣的方法,從樣本成績在[60,70]和[90,100]的學(xué)生中共抽取5人,則[60,70)中抽取4人,[90,100)中抽取1人,由此能求出結(jié)果.

解答 解:(Ⅰ)由題意$\frac{16}{m}=0.2$,解得m=80,
∴n=$\frac{50}{80}=0.625$,
∴p=1-0.2-0.625-0.05=0.125.
∴a=$\frac{n}{10}$=$\frac{0.625}{10}$=0.0625.
(Ⅱ)樣本分?jǐn)?shù)在[60,70)中的有0.02×10×80=16人,
在[90,100)中的有0.005×10×80=4人,
用分層抽樣的方法,從樣本成績在[60,70]和[90,100]的學(xué)生中共抽取5人,
則[60,70)中抽取$\frac{16}{20}×5$=4人,[90,100)中抽取$\frac{4}{20}×5$=1人,
再從5人中選2人,基本事件總數(shù)n=${C}_{5}^{2}=10$,
這2人成績在[60,70)包含的基本事件個數(shù)m=${C}_{4}^{2}$=6,
這2人成績在[60,70]的概率p=$\frac{m}{n}=\frac{6}{10}$=0.6.

點(diǎn)評 本題考查頻率分布表、頻率分布直方圖、分層抽樣的應(yīng)用,考查概率的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等可能事件概率計(jì)算公式的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.函數(shù)fn(x)=xn+bx+c(n∈Z,b,c∈R).
(1)若n=-1,且f-1(1)=f-1($\frac{1}{2}$)=4,試求實(shí)數(shù)b,c的值;
(2)設(shè)n=2,若對任意x1,x2∈[-1,1]有|f2(x1)-f2(x2)|≤4恒成立,求b的取值范圍;
(3)當(dāng)n=1時,已知bx2+cx-a=0,設(shè)g(x)=$\frac{{\sqrt{1-{x^4}}}}{{1+{x^2}}}$,是否存在正數(shù)a,使得對于區(qū)間$[{-\frac{{2\sqrt{5}}}{5},\frac{{2\sqrt{5}}}{5}}]$上的任意三個實(shí)數(shù)m,n,p,都存在以f1(g(m)),f1(g(n)),f1(g(p))為邊長的三角形?若存在,求出a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在極坐標(biāo)系中,已知直線l的方程為$ρcos(θ-\frac{π}{4})=2$,圓C的方程為ρ=4sinθ-2cosθ,試判斷直線l與圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如圖,陰影部分是由四個全等的直角三角形組成的圖形,若直角三角形兩條直角邊的長分別為a,b,且a=2b,則在大正方形內(nèi)隨即擲一點(diǎn),這一點(diǎn)落在正方形內(nèi)的概率為$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若函數(shù)$f(x)=\sqrt{3}sin(2x+φ)+cos(2x+φ)(|φ|<\frac{π}{2})$為偶函數(shù),則( 。
A.f(x)的最小正周期為π,且在$(0,\frac{π}{2})$上為增函數(shù)
B.f(x)的最小正周期為$\frac{π}{2}$,且在$(0,\frac{π}{4})$上為增函數(shù)
C.f(x)的最小正周期為$\frac{π}{2}$,且在$(0,\frac{π}{4})$上為減函數(shù)
D.f(x)的最小正周期為π,且在$(0,\frac{π}{2})$上為減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知m為實(shí)數(shù),i為虛數(shù)單位,若m+(m2-4)i>0,則$\frac{m+2i}{2-2i}$=(  )
A.iB.1C.-iD.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{3}}}{2}$,以橢圓C的上頂點(diǎn)T為圓心作圓T:x2+(y-1)2=r2(r>0),圓T與橢圓C在第一象限交于點(diǎn)A,在第二象限交于點(diǎn)B.
(Ⅰ)求橢圓C的方程;
(Ⅱ)求$\overrightarrow{TA}•\overrightarrow{TB}$的最小值,并求出此時圓T的方程;
(Ⅲ)設(shè)點(diǎn)P是橢圓C上異于A,B的一點(diǎn),且直線PA,PB分別與Y軸交于點(diǎn)M,N,O為坐標(biāo)原點(diǎn),求證:|OM|•|ON|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知曲線C1:ρ=cosθ-sinθ,曲線${C_2}:\left\{{\begin{array}{l}{x=\frac{1}{2}-\frac{{\sqrt{2}}}{2}t}\\{y=\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$(t為參數(shù)).
(1)求曲線C1的直角坐標(biāo)方程;
(2)若曲線C1與曲線C2相交于P、Q兩點(diǎn),求|PQ|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.一個幾何體的三視圖如圖所示,則其體積為( 。
A.π+2B.2π+4C.π+4D.2π+2

查看答案和解析>>

同步練習(xí)冊答案