若曲線f(x)=lnx-ax(a∈R)在點(1,f(1))處的切線與直線x-y+1=0垂直,則a=
 
考點:利用導數(shù)研究曲線上某點切線方程
專題:導數(shù)的綜合應用
分析:求出函數(shù)的導數(shù),利用導數(shù)的幾何意義結(jié)合直線垂直的等價條件,即可得到結(jié)論.
解答: 解:∵函數(shù)在點(1,f(1))處的切線與直線x-y+1=0,
∴切線斜率k=-1,即k=f′(1)=-1,
∵f(x)=lnx-ax,
∴f′(x)=
1
x
-a
,
即k=f′(1)=1-a=-1,
解得a=2,
故答案為:2
點評:本題主要考查導數(shù)的幾何意義的應用以及直線垂直的關(guān)系,根據(jù)導數(shù)求出函數(shù)的切線斜率是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

下列函數(shù)中,是對數(shù)函數(shù)的是(  )
①y=lgxa(x>0且x≠1)②y=log2x-1③y=2lg8x④y=log5x.
A、①B、②C、③D、④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={-1,0,1},B={x|1≤2x<4},則A∩B等于(  )
A、{1}
B、{-1,1}
C、{1,0}
D、{-1,0,1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下面一組圖形為三棱錐P-ABC的底面與三個側(cè)面.已知AB⊥BC,PA⊥AB,PA⊥AC.

(1)在三棱錐P-ABC中,求證:平面ABC⊥平面PAB;
(2)在三棱錐P-ABC中,M是PA的中點,且PA=BC=3,AB=4,求三棱錐P-MBC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)面PAD⊥底面ABCD,若E、F分別為PC、BD的中點.
(Ⅰ)求證:EF∥平面PAD;
(Ⅱ)求證:平面PDC⊥平面PAD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若直線a∥b,且a⊥平面α,則b與α的關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四面體ABCD中,O是BD的中點,CA=CB=CD=BD=2,AB=AD=
2

(1)求證:AO⊥平面BCD;
(2)求異面直線AB與CD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線y=kx+3與圓(x-2)2+(y-3)2=4相交于M、N兩點,若|MN|≤2
3
,則k的取值范圍是( 。
A、[
3
,
3
]
B、(0,
3
]
C、(-∞,-
3
3
]∪[
3
3
,+∞)
D、[-
3
3
,
3
3
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

擲兩枚骰子,記事件A為“向上的點數(shù)之和為n”.
(1)求所有n值組成的集合;
(2)n為何值時事件A的概率P(A)最大?最大值是多少?
(3)設計一個概率為0.5的事件(不用證明)

查看答案和解析>>

同步練習冊答案