【題目】已知函數(shù)y=f(x),x∈R,對(duì)于任意的x,y∈R,f(x+y)=f(x)+f(y),若f(1)= ,則f(﹣2016)=

【答案】﹣1008
【解析】解:∵函數(shù)y=f(x),x∈R,對(duì)于任意的x,y∈R,f(x+y)=f(x)+f(y),

∴令x=0,y=0 得 f(0)=f(0)+f(0)即 f(0)=0,

令y=﹣x 代入得 f(0)=f(x)+f(﹣x)=0 所以原函數(shù)是奇函數(shù),

∵f(1)= ,

∴f(﹣2016)=﹣f(2016)=﹣2016×f(1)=﹣2016× =﹣1008.

所以答案是:﹣1008.

【考點(diǎn)精析】本題主要考查了函數(shù)的值的相關(guān)知識(shí)點(diǎn),需要掌握函數(shù)值的求法:①配方法(二次或四次);②“判別式法”;③反函數(shù)法;④換元法;⑤不等式法;⑥函數(shù)的單調(diào)性法才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A=[﹣1,3],B=[m,m+6],m∈R.
(1)當(dāng)m=2時(shí),求A∩RB;
(2)若A∪B=B,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)y=sin(2x﹣ )的圖象先向左平移 個(gè)單位,再將圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的 倍(縱坐標(biāo)不變),那么所得圖象的解析式為y=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)F(0,1),點(diǎn)P在x軸上,點(diǎn)Q在y軸上, =2 , ,當(dāng)點(diǎn)P在x軸上運(yùn)動(dòng)時(shí),點(diǎn)N的軌跡為曲線(xiàn)C.
(1)求曲線(xiàn)C的方程;
(2)過(guò)點(diǎn)F的直線(xiàn)l交曲線(xiàn)C于A,B兩點(diǎn),且曲線(xiàn)C在A,B兩點(diǎn)處的切線(xiàn)相交于點(diǎn)M,若△MAB的三邊成等差數(shù)列,求此時(shí)點(diǎn)M到直線(xiàn)AB的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn) 所圍成的封閉曲線(xiàn),給定點(diǎn)A(0,a),若在此封閉曲線(xiàn)上恰有三對(duì)不同的點(diǎn),滿(mǎn)足每一對(duì)點(diǎn)關(guān)于點(diǎn)A對(duì)稱(chēng),則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C:9x2+y2=m2(m>0),直線(xiàn)l不過(guò)原點(diǎn)O且不平行于坐標(biāo)軸,l與C有兩個(gè)交點(diǎn)A,B,線(xiàn)段AB的中點(diǎn)為M.
(1)證明:直線(xiàn)OM的斜率與l的斜率的乘積為定值;
(2)若l過(guò)點(diǎn)( ,m),延長(zhǎng)線(xiàn)段OM與C交于點(diǎn)P,四邊形OAPB能否為平行四邊形?若能,求此時(shí)l的斜率;若不能,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an},公差為2,的前n項(xiàng)和為Sn , 且a1 , S2 , S4成等比數(shù)列,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn= (n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在R上的單調(diào)函數(shù)f(x)滿(mǎn)足:f(x+y)=f(x)+f(y),若F(x)=f(asinx)+f(sinx+cos2x﹣3)在(0,π)上有零點(diǎn),則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在透明塑料制成的長(zhǎng)方體ABCD﹣A1B1C1D1容器內(nèi)灌進(jìn)一些水,將容器底面一邊BC固定于地面上,再將容器傾斜,隨著傾斜度的不同,有下列四個(gè)說(shuō)法: ①水的部分始終呈棱柱狀;
②水面四邊形EFGH的面積不改變;
③棱A1D1始終與水面EFGH平行;
④當(dāng)E∈AA1時(shí),AE+BF是定值.其中正確說(shuō)法的是(

A.②③④
B.①②④
C.①③④
D.①②③

查看答案和解析>>

同步練習(xí)冊(cè)答案