平面直角坐標(biāo)系中,三個(gè)頂點(diǎn)的坐標(biāo)為A(a,0),B(0,b),C(0,c),點(diǎn)D(d,0)在線段OA上(異于端點(diǎn)),設(shè)a,b,c,d均為非零實(shí)數(shù),直線BD交AC于點(diǎn)E,則OE所在的直線方程為        _      

 

【答案】

【解析】

試題分析:∵A(a,0),B(0,b),C(0,c), D(d,0),∴直線AC:cx+ay-ac=0,直線BD:bx+dy-bd=0,聯(lián)立得點(diǎn)E(),∴,故直線OE的直線方程為

考點(diǎn):本題考查了直線方程的求法

點(diǎn)評(píng):求直線方程的一般方法

(1)直接法:直接選用直線方程的其中一種形式,寫出適當(dāng)?shù)闹本方程;

(2)待定系數(shù)法:先由直線滿足的一個(gè)條件設(shè)出直線方程,方程中含有一個(gè)待定系數(shù),再由題目中給出的另一條件求出待定系數(shù),最后將求得的系數(shù)代入所設(shè)方程,即得所求直線方程。簡(jiǎn)而言之:設(shè)方程、求系數(shù)、代入

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①“sinα-tanα>0”是“α 是第二或第四象限角”的充要條件;
②平面直角坐標(biāo)系中有三個(gè)點(diǎn)A(4,5)、B(-2,2)、C(2,0),則直線AB到直線BC的角為arctan
4
3
;
③函數(shù)f(x)=cos2x+
3
cos2x
的最小值為2
3

④設(shè)[m]表示不大于m的最大整數(shù),若x,y∈R,那么[x+y]≥[x]+[y].
其中所有正確命題的序號(hào)是
 
.(將你認(rèn)為正確的結(jié)論序號(hào)都寫上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①若“sinα-tanα>0”則“α是第二或第四象限角”;
②平面直角坐標(biāo)系中有三個(gè)點(diǎn)A(4,5),B(-2,2),C(2,0),則tan∠ABC=
43
;
③若a>1,b>1且lg(a+b)=lga+lgb,則lg(a-1)+lg(b-1)的值為1;
④設(shè)[m]表示不大于m的最大整數(shù),若x,y∈R,那么[x+y]≥[x]+[y];
其中所有正確命題的序號(hào)是
①④
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(滿分14分)本題有2小題,第1小題6分,第2小題8分.

已知在平面直角坐標(biāo)系中,三個(gè)頂點(diǎn)的直角坐標(biāo)分別為,

(1)若,求的值;

(2)若為銳角三角形,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(滿分14分)本題有2小題,第1小題7分,第2小題7分.

已知在平面直角坐標(biāo)系中,三個(gè)頂點(diǎn)的直角坐標(biāo)分別為,

(1)若,求的值;

(2)若為鈍角,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案